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Abstract. Progressive server-side rendering (PSSR) enhances the user
experience by optimizing the first contentful paint and supporting in-
cremental rendering as data becomes available. However, constructing
web templates for asynchronous data models introduces complexity due
to undesired interleaving between data access completion and template
processing, potentially resulting in malformed HTML. Existing asyn-
chronous programming idioms, such as async/await or suspending func-
tions, enable developers to create code with a synchronous appearance
while maintaining non-blocking progress. In this work, we introduce the
first proposal for server-side rendering (SSR) web templates that seam-
lessly support the async/await pattern. Our proposal addresses the chal-
lenges associated with building SSR web templates for asynchronous data
models, ensuring the production of well-formed HTML documents and
preserving the capability of PSSR.

1 Introduction

The contemporary landscape of web applications involves pulling information
from diverse web services scattered worldwide, each operating at varying speeds
and latencies [12]. Consequently, data models often result from numerous I/O
operations across heterogeneous sources rather than a single one. Amidst this
landscape, low-thread servers, also referred to as event-driven[5], hold a notable
advantage in efficiently managing a large number of concurrent I/O operations
with minimal resources. However, the non-blocking I/O model used in low-thread
servers introduces an asynchronous calling convention that may pose compati-
bility challenges with most legacy templates used in server-side rendering (SSR)
web applications, due to the complex non-linear control flow [18]. Traditional
web-application frameworks with SSR template engines, such as ASP.Net, Ex-
press.js, Spring, and others, tend to offer a transparent and straightforward
rendering approach that interacts with a data stream using synchronous APIs,
such as the Enumerator, Iterator, or Stream interfaces. However, these types
are incompatible with blocking data access in a low-thread server. To circum-
vent blocking, SSR controllers or routes often collect items from data sources
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into in-memory data structures through concurrent continuations. Only when
all data retrieval is complete do they proceed to render the view. However, in a
multiple data source scenario, the high latency of a single data source may defer
the collection of the entire data model, resulting in a rendering delay, that can
compromise important user-centric performance metrics such as the Speed Index
or First Contentful Paint (FCP) [3].

An alternative approach involves deconstructing the HTTP response handler
infrastructure and directly managing the response stream, providing it to the
template as its Appendable or Writer output. Consequently, while the template
is being processed, it directly emits the resulting HTML to the response out-
put. However, most templates do not support asynchronous or reactive APIs,
and even those that are not limited to any specific model interface may en-
counter negative effects. Handling data models through asynchronous APIs can
lead to undesirable interleaving between template processing and asynchronous
calls, potentially resulting in an ill-formed HTML document. Two alternative
techniques can address these ill effects while preserving their core characteris-
tics. One technique involves employing a user-level threading runtime, and still
using a blocking I/O interface [10], which enables a sequential programming
flow. Another technique [2] follows the event-driven paradigm, extending the
API of a domain-specific language (DSL) for HTML (namely HtmlFlow1) with
a data binding interface based on continuation-passing style. While the former
approach [10] shows that, at best, it can only deliver performance competitive
with event-driven servers, the latter proposal [2] may increase programming
complexity and potentially lead to what is known as callback hell [9].

In this work, we propose suspendable web templates that support the async/
await pattern [16] for SSR, allowing templates to pause without blocking on
asynchronous API calls and resume upon completion. This allows an event-
driven web server to maintain a sequential programming style in SSR web
templates without the complexity of managing continuations, leveraging non-
blocking I/O. Our proposal extends the work of Carvalho et al. [2] and main-
tains its key advantages, including PSSR. We also introduce the first benchmark
using a modern web server (i.e., Spring WebFlux), comparing user-level blocking
I/O subsystem approaches with purely non-blocking I/O techniques, including
our proposal for suspendable web templates, which demonstrates superior perfor-
mance. The remainder of the paper is organized as follows. In Section 2, related
work is reviewed. Section 3 provides a description of the ill-effects resulting from
the use of asynchronous data models in SSR. Section 4 presents our proposal.
Evaluation results with respect to performance and scalability are discussed in
Section 5. Finally, conclusions and future work are described in Section 6.

2 Related Work

Progressive rendering and progressive loading encompass different con-
cepts. The former pertains to the dynamic content of a dynamic web page, en-
1 https://htmlflow.org
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compassing elements with logic and placeholders that are fulfilled by data from
an object model constructed at runtime. On the other hand, the latter is associ-
ated with render-blocking resources such as scripts, stylesheets, and HTML im-
ports, which may hinder the browser from rendering page content to the screen.
The notion of progressive rendering has typically been aligned with client-side
rendering (CSR), where a single HTML page with static content is delivered
upfront, while the dynamic content is fetched as the data becomes available to
complete the web page. However, despite being overlooked, HTTP and browsers
were designed from their inception to also support this feature in the context of
SSR approaches, which offers the advantage of not being dependent on rendering-
blocking resources, such as the required JavaScript for CSR. An example of this
limitation in SSR web templates was highlighted by Jeff Atwood in 2005, who
criticized Microsoft ASP.NET for loading the entire web page into memory be-
fore sending any data to the browser [1]. Despite historical critiques and HTML’s
inherent capabilities, most Web application frameworks, such as ASP.Net, Ex-
press.js, Spring, and others, persistently lack support for progressive render-
ing, leading to the appearance of alternative techniques leveraging client-side
JavaScript. Since 2007, various patents have addressed the PSSR issue, with Mi-
crosoft’s patent enabling the infinite scrolling technique by displaying a single
page of results [6], and Yahoo’s patent focusing on differentiating elements based
on their position relative to the visible portion [15].

Starting in 2014, the Marko web framework 2 proposed an HTML-based
language for building dynamic web pages, loading elements progressively on a
component-based level, with the inclusion of additional client-side JavaScript.
In 2016, Rechkunov [14] demonstrated a proposal for progressive rendering at
the SSR level in Node.js with Express.js, without requiring any auxiliary client-
side JavaScript. This was achieved by leveraging the Readable API to stream
HTML fragments to the web client, but it required programmers to manage
templates in fragments and manually compose them into a Readable object, as
demonstrated with the Jade template engine. React, a CSR-based JavaScript
framework introduced the renderToPipeableStream feature in 2020 to enable
PSSR, also identified as streaming SSR [8]. The Java Thymeleaf, the default
SSR template engine for Spring web servers, added support for PSSR in 2018,
through the use of a specific non-blocking Spring ViewResolver driver and with-
out requiring client-side JavaScript. This mechanism requires a data model of
type Publisher from reactive streams library [13]. As the Publisher emits data
items, the driver ensures their availability to the template, which renders and
streams HTML chunks incrementally to the client as they are produced. In 2020,
the Hotwired Turbo framework 3 embraced an SSR web development approach
based on link navigation and forms submission. These actions are intercepted by
client-side JavaScript to prevent total page reloads and instead receive HTML
fragments from the server over WebSocket. Vogel [17] introduced the concept of
progressively streamed web pages to mitigate render-blocking files. This tech-

2 https://markojs.com/
3 https://turbo.hotwired.dev/
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nique involves pre-processing to extract content, eliminate render-blocking re-
sources, and convert the resulting page data into a streamable representation. A
minimal page with client-side code is initially transferred, which then establishes
the streaming connection.

Former techniques all describe methods of progressively adding content to a
web page; however, only Thymeleaf template engine and Rechkunov’s proposal
deals with dynamic page content without depending on client-side JavaScript.
It’s worth noting that Thymeleaf is limited to a single model and the asyn-
chronous API of Publisher. Carvalho [2] introduced an SSR solution that man-
ages multiple data models and asynchronous APIs while ensuring well-formed
HTML, PSSR, and non-blocking template resolution. Like Thymeleaf, their pro-
posal avoids the use of client-side JavaScript; however, unlike Thymeleaf, it sup-
ports a wide range of asynchronous APIs and multiple data sources, not limited
to the Publisher API. However, the main counter-argument is the non-trivial
management of the resume callback in continuations [18,9], which is used to lin-
earize the execution flow between asynchronous calls. An alternative approach
involves utilizing user-level threads, also known in some contexts as stackless
coroutines, while maintaining a blocking I/O and a synchronous programming
paradigm. However, this approach still requires a user-level I/O subsystem ca-
pable of mitigating system-level blocking, which is crucial for the performance
of I/O-intensive applications. This technique offers a lightweight solution for
efficiently managing a larger number of concurrent sessions by minimizing per-
thread overhead [10]. The same idea has been followed in Kotlin with corou-
tines [4], and most recently in the Java standard library with virtual threads
released in Java 21. However, no work has yet leveraged this mechanism to en-
able legacy template engines to provide PSSR while preserving non-blocking
progress.

Many general-purpose languages (GPLs) have embraced the async/await fea-
ture [16] enabling non-blocking routines to mimic the structure of synchronous
ones, allowing developers to reason about instruction flow sequentially. The sim-
plicity and broad adoption of this programming model have led to its incorpora-
tion into mainstream languages like C#, JavaScript, Python, Perl, Swift, Kotlin,
and others, excluding Java. However, implementing async/await requires com-
piler support to translate suspension points (i.e., await statements) into state
machines. Most template engines operate using an external DSL with their own
templating dialect (e.g., Thymeleaf, JSP, Jade, Handlebars, and others), which
do not inherently leverage asynchronous capabilities from their host GPLs.

3 Problem Statement

HtmlFlow Basics: An external DSL for HTML like Thymeleaf, JSP, Han-
dlebars, Pebble, FreeMarker, and others, defines web templates within HTML
documents, interspersing HTML statements with specific markers like <%, {{}},
${}, or others. On the other hand, an internal DSL like HtmlFlow, Hiccup,
ScalaTags, KotlinX.Html, or others, leverages its host programming language
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(e.g., Java, Clojure, Scala, Kotlin) as the core dialect to define web templates,
fully utilizing the language’s constructs. HtmlFlow was originally designed for
Java but is also compatible with Kotlin. To achieve the objectives of this work,
we extended HtmlFlow to include a Kotlin idiomatic API, specifically support-
ing HTML builders using function literals with receiver. In Kotlin, a block of
code enclosed in curly braces {...} is known as a lambda, and can be used as
an argument to a function that expects a function literal. When we write, for
example, body { div { hr() } }, we are invoking the body function with a
lambda as its argument. This lambda, in turn, calls the div function with an-
other lambda as an argument that creates a horizontal row (i.e. hr). Each call
to an HTML builder (e.g., body, div, hr) creates the child element within the
element generated by the outer function call.

Challenges of Asynchronous Interweaving: Examining a web template
defined with an internal DSL, such as HtmlFlow, allows us to distinctly trace
the flow along the HTML emission through the calls to HTML builders. The
web template wxView in Listing 1.1 constructs an HTML document containing
the temperatures of the main locations in a given country (e.g. Australia). The
Location class includes the city’s name and a temperature in celsius. The model
of wxView is defined by the following class, Weather, which includes the country’s
name and a sequence of Location objects in an Iterable:
class Weather(val country: String, val cities: Iterable<Location>)

1 val wxView = view <Weather > {
2 html {
3 head {
4 title { dyn { m: Weather ->
5 text(m.country)
6 } } // title
7 } // head
8 body {
9 table { attrBorder(_1)

10 tr {
11 th { text("City") }
12 th { text("Celsius") }
13 }
14 dyn { m: Weather ->
15 m.cities.forEach {
16 tr {
17 td { text(it.city) }
18 td { text(it.celsius) }
19 } // tr
20 } // forEach
21 } // dyn
22 } // table
23 } // body
24 } // html
25 }

Listing 1.1: HtmlFlow view for
Iterable<Location> in Kotlin.

Fig. 1: Page for locations in Australia.

<html >
<head ><title >Australia </title ></head >
<body >
<table border ="1">
<tr >
<th >City </th>
<th >Celsius </th>

</tr >
<tr ><td >Adelaide </td ><td >9</td ></tr >
<tr ><td >Darwin </td ><td >31</td ></tr >
<tr ><td >Perth </td ><td >16</td ></tr>

</table >
</body >

</html >

Listing 1.2: HTML resulting from
wxView of Listing 1.1

Rendering the wxView from Listing 1.1 with a model containing the locations
for Adelaide, Darwin, and Perth may generate an HTML page similar to the
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Figure 1, with the HTML source found in Listing 1.2. The dyn builder (indicating
dynamic, lines 4 and 14) is employed to seamlessly integrate Kotlin code into
the definition of web templates and has the signature defined in Listing 1.3. It
takes a function literal (i.e. cons) with a receiver corresponding to the parent
element (i.e. T) and an argument representing the model (i.e. M). The dyn builder
returns the same parent element (i.e. T). The model (e.g. australia) will be
provided later to the write(model: T) method of the HtmlView object referenced
by wxView, e.g. wxView.setOut(outStream).write(australia).

Element <T>.dyn(cons: T.(M) -> Unit): T

Listing 1.3: HtmlFlow builder dyn to intertwine Kotlin constructs.

If we envision this view being employed in a scenario where temperatures are
gathered in real-time for each location, and, for instance, the last location (i.e.,
Perth) takes 2 seconds to be fetched, then the entire view resolution is post-
poned. Consequently, the browser displays an unresponsive blank page while
waiting for the server response. In this example, the Speed Index and FCP will
be greater than or equal to 2 seconds, which will be considered as needing im-
provement [3]. In this case, it would be more appropriate to utilize a reactive data
model [12] that emits a new Location object as the temperatures are fetched
for each location. Rather than waiting to collect all locations in memory and
proceeding to wxView rendering only after that, we could define a view based on
an asynchronous stream of events produced for each location as events occur.
Our objective is to generate a new table row progressively, based on the events
received from the data model, as illustrated in Figure 2. In this scenario, the
initial frame displaying the table headings ("City" and "Celsius") is emitted
immediately, ensuring that there is no negative impact on the FCP due to the
delay in loading the data items.

Fig. 2: Progressive rendering behavior of a table.

One way of modelling such a stream is through an Observable [11], an in-
terface that coordinates data pushed asynchronously. In this case, consider a
new view, wxRxView, with the asynchronous version of the Weather class named
WeatherRx, which includes the cities property as an Observable<Location> in-
stead of an Iterable<Location>. To iterate through the Location events emit-
ted by the Observable, we can use the forEach(Consumer<Location>) method
to register the callback that will handle each location. Thus, the definition of the
new view, wxRxView, is identical to the implementation of Listing 1.1, regardless
of the model type being WeatherRx. Despite the similarities, there is a signif-
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icant difference in the order of execution between the calls to the HtmlFlow
builders in wxView (Figure 3) and wxRxView (Figure 4). The red line dictates
the order of execution of each call to the HtmlFlow builders. While the calls to
HtmlFlow builders in Figure 3 are sequential, executed in the same order as they
are chained in the definition of wxView, the same is not true for wxRxView.

Fig. 3: Inline execution of forEach
callback in wxView for an Iterable.

Fig. 4: Deferred execution of forEach
callback in wxRxView for an Observable.

In Figure 4, it is evident that after the invocation of forEach, the execu-
tion completes and returns from dyn. Subsequently, it returns from the table
and body builders, emitting the end tags for table and body. Notably, this oc-
curs without waiting for the completion of the emission of the locations by the
Observable cities. We have highlighted the forEach callback in gray, denoting
that its execution was deferred until the occurrence of the Location events. Only
after the closing tags are emitted will the forEach callback be invoked for each
location from the cities Observable of the WeatherRx model. The sequence of
execution illustrated in Figure 4 results in a potentially ill-formed HTML docu-
ment where the table rows may appear outside the table element, as depicted
in Listing 1.4. Figure 5 illustrates the resulting layout of this malformed ta-
ble, where the table rows are positioned outside the table frame and displayed
horizontally instead of vertically.

<html >
<head ><title >Australia </title ></head >
<body >
<table border ="1">
<tr ><th >City </th ><th >Celsius </th ></tr >

</table >
</body >

</html >
<tr ><td >Adelaide </td ><td >9</td ></tr >
<tr ><td >Darwin </td ><td >31</td ></tr>
<tr ><td >Perth </td ><td >16</td ></tr >

Listing 1.4: Ill-formed HTML.

Fig. 5: Example of a malformed
HTML page resulting from wxRxView
of Figure 4 rendering an Observable.

Despite our example is using HtmlFlow, the same ill-effect would occur
when implementing wxRxView with other internal DSLs applying PSSR, such as
with Groovy MarkupBuilder or KotlinX.html. Moreover, this adverse behavior
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is not unique to the use of an Observable; it will occur with the use of any
non-blocking API within a web template, as we will demonstrate in the section
4 with a different scenario involving multiple asynchronous data sources.

4 Suspendable Web Templates

Foundation: HtmlFlow was conceived as a lightweight and efficient Java DSL
for generating HTML. To achieve this, HtmlFlow conducts pre-encoding by ex-
tracting static portions of the template beforehand and encoding them into
HTML blocks (this technique is also used by Rocker and JStachio web tem-
plates). This approach aims to minimize the encoding cost during template ren-
dering. Therefore, the HtmlView in HtmlFlow operates on a simple assumption:

Any action on template elements not within a dynamic block
(i.e., .dyn{...}) is treated as static information.

To illustrate the distinction between static and dynamic block processing,
consider the template of Listing 1.6 that includes three dynamic blocks (lines 5,
9, and 19) and may produce the page of Figure 6. This template binds a data
model, i.e., Artist, with information gathered from two distinct data sources:
MusicBrainz (an open music encyclopedia) and Spotify (an audio streaming
service), according to the definition presented in Listing 1.5. The properties
musicBrainz and spotify in the Artist class are of type CompletableFuture,
an implementation of a Promise [7]. Similar to an Observable, this type is used
to represent an asynchronous computation that may complete at some point,
but it produces a single result rather than emitting multiple events.
class MusicBrainz(val year: Int , val from: String , val genres: String)
class Spotify(val popularSongs: List <String >)
class Artist(

val name: String ,
val musicBrainz: CompletableFuture <MusicBrainz >,
val spotify: CompletableFuture <SpotifyArtist >

)

Listing 1.5: Domain classes Artist, MusicBrainz and Spotify.

Former implementation of HtmlFlow used an imperative flag-based approach
to control the state of HTML emission, and determine whether it is inside a
static, or a dynamic HTML fragment. On the first rendering, HtmlFlow re-
tained an internal data structure containing the HTML outcomes from each
static block. In the case of the template shown in Listing 1.6, HtmlFlow would
store the designated static blocks depicted in Figure 7. In subsequent renders,
HtmlFlow’s resolution process will intertwine HTML emission, alternating be-
tween the content retrieved from the staticHtmlBlocks data structure and the
execution of consumers (i.e. cons) provided to dynamic builders, i.e. dyn of List-
ing 1.3. Calling the consumer of a dynamic fragment uses a direct style and when
it returns it proceeds emitting HTML of the following static HTML block and
henceforward. When a dynamic fragment binds with an asynchronous API, such
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1 val artistView = view <Artist > {
2 html {
3 body {
4 h3 {
5 dyn { m: Artist -> text(m.name) }
6 } // h3
7 h3 { +"MusicBrainz info:" }
8 ul {
9 dyn { m: Artist -> m.musicBrainz

10 .thenAccept { mb ->
11 li { +"Founded: ${mb.year}" }
12 li { +"From: ${mb.from}" }
13 li { +"Genre: ${mb.genres}" }
14 } // thenAccept
15 } // dyn
16 } // ul
17 p {
18 b { +"Spotify popular tracks:" }
19 dyn { m: Artist -> m.spotify
20 .thenAccept { spt ->
21 text(join(", ", spt.popularSongs))
22 } // thenAccept
23 } // dyn
24 } // p
25 } // body
26 } // html
27 }

Listing 1.6: artistView template.

Fig. 6: artistView for David Bowie.

Fig. 7: Static HTML blocks resulting
from the HtmlFlow processing.

as the call to the CompletableFuture thenAccept (lines 10 and 20), it returns
immediately, proceeding to the next static HTML block before the handlers have
completed, as highlighted in the gray-colored statements of Listing 1.6. This
effect leads to a malformed HTML document where the list items and para-
graph’s text will appear after the end of the document, as demonstrated too
in the use case presented in Listing 1.4. To address the aforementioned issue,
HtmlFlow needs to determine when an asynchronous completion handler has
finished so that it can proceed to emit the next static HTML block. To that
end HtmlFlow replaced the former rendering process with a new infrastructure
based on a chain of continuations specified by the interface HtmlContinuation,
where each implementation is responsible for emitting a static or a dynamic
fragment, and call the next continuation, as depicted in Figure 8. Note that
each continuation is defined within brackets (i.e., { model -> ...}), denoting
a function literal (i.e., lambda). When rendering an HtmlFlow view, for exam-
ple, artistView.setOut(outStream).write(bowie), the instance referenced by
bowie becomes the model parameter for each continuation.

Following this transformation, each static block in Figure 7 becomes a func-
tion emitting a String literal through the visitor.write() call in Figure 8. Con-
versely, a dynamic block becomes a function that invokes the consumer passed
to the dyn builder (i.e. cons). Both continuation functions conclude with the
invocation of the next continuation through the callback next().

Suspendable Web Templates: To address the asynchronicity issue, we
need to pause the execution of a continuation when it calls a consumer per-



10 Fernando Miguel Carvalho

Fig. 8: Example of HtmlFlow continuations emitting static or dynamic HTML.

forming an asynchronous action and proceed only when that action completes.
This idea of pausing/resuming fits with the semantics of Kotlin suspending func-
tions [4], which is also consistent with the semantics of async/await [16] in other
programming languages. In Kotlin a suspending function differs from a “normal”
function (i.e., non-suspend function) by potentially having zero or more suspen-
sion points, which are statements in its body that may pause the function’s
execution to be resumed at a later moment in time. In turn, suspension points
occur in the following scenario:

Whenever a suspending function calls another suspending
function, a suspension point is created.

Based on this assumption, to introduce a suspension point in a continuation when
it calls an asynchronous consumer, we must convert both the continuation
and the consumer into suspending functions. Kotlin suspending functions are
intended to be used exclusively within the context of other suspending functions,
similar to how async functions are employed in other programming languages.
The propagation among suspension points and suspending functions within a
suspendable web template forms a path of suspending computations that be-
gins with the start of the rendering process when the write() method is called
(e.g. artistView...write(bowie)). This implies that the write() method must
also conform to a suspending function, necessitating the introduction of a new
type of view, namely HtmlViewSuspend. This new implementation encompasses
the internal infrastructure, including pre-encoding, visitors, and the rendering
process, tailored for the new suspending consumers. The root of the suspending
functions chain must begin within a coroutine, which in the context of the web
server, serves as a route handler responsible for processing an HTTP request and
rendering a view. Many web application frameworks, such as Vert.x and Spring
WebFlux, support the implementation of routes leveraging Kotlin coroutines,
which seamlessly integrate with this suspending rendering process.

Beyond that, our proposal extends HtmlFlow’s API and includes a new
suspending extension builder, similar to dyn in Listing 1.3, but it accepts a
suspending function literal cons instead of a regular function, such as:
Element<T>.suspending(cons: suspend T.(M)-> Unit): T
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This suspending builder allows us to interleave any Kotlin suspending con-
struct within a web template definition, such as await and asFlow. This en-
ables manipulation of JVM asynchronous effects like CompletableFuture and
Publisher, with suspension points that provide a synchronous-like programming
style without blocking. The example in Listing 1.6 demonstrates a dynamic bind-
ing (lines 9 and 19) with a nested continuation of a CompletableFuture using
thenAccept. This can now be simplified with the Kotlin await() utility, which
retrieves the value from the CompletableFuture without blocking, suspending
execution until the value becomes available as depicted in Listing 1.7. Note that
in the new example using the suspending API, we eliminate the nested lambda of
thenAccept. Furthermore, we are also addressing the issue of malformed HTML
because the template processing is suspended and will not proceed to the next
statements until the result of the await() call becomes available. For the exam-
ple in Listing 4 regarding a model of type Observable<Weather>, we can leverage
asFlow() to convert it into a coroutine-based flow. A Flow is the Kotlin counter-
part of the Publisher in reactive streams [13], designed for asynchronous data
stream processing with support for suspending functions and coroutines. The use
of collect (equivalent to forEach) in Listing 1.8 involves a suspending function
that resumes execution with the provided lambda whenever a new item is emitted
by the Flow derived from m.cities().asFlow(). As with await(), computation
is suspended during collect() and will only proceed once all items from the
Flow have been emitted. During suspension on collect call, the nested lambda
is invoked for each emitted item, enabling the progressive emission of each row
within the HTML table.

val artistView = ...
...
ul {

suspending { m: Artist ->
val mb = m.musicBrainz.await ()
li { text("Founded: ${mb.year}") }
li { text("From: ${mb.from}") }
li { text("Genre: ${mb.genres}") }

}
}

Listing 1.7: await() in HtmlFlow

val wxRxView = ...
...
suspending { m: WeatherRx ->

m.cities.asFlow ().collect {
tr {

td { text(it.city) }
td { text(it.celsius) }

}
}

}

Listing 1.8: Flow in HtmlFlow

Adapting other callback-based APIs to coroutines is straightforward, as de-
monstrated in the following approach. The Kotlin compiler translates each sus-
pending function into a regular function that adheres to the continuation-passing
style. For a suspending function with parameters p1, p2, . . . , pN and result type
T , it generates a new function with an additional parameter pN+1 of type Conti-
nuation<T> and changes the return type to Any (i.e., Object in the JVM). The
calling convention for a suspending function differs from regular functions since
it may either suspend or return (when complete). When it suspends, it returns
a special value COROUTINE_SUSPENDED to signal its status; when it completes,
it returns a result directly. That said, it is possible to reverse the compiler’s
translation process and convert a resulting CPS function back into its origi-
nal suspending function. By wrapping a callback-based invocation in a func-
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tion whose last parameter is of type Continuation, we can cast this wrapper
function to its suspending type counterpart and handle it properly at suspen-
sion points. In the example of Listing 1.9, we demonstrate this mechanism
by implementing our own holdFor() function, equivalent to Kotlin’s await().
This function can replace the use of m.musicBrainz.await() in Listing 1.7
with SuspendableCf(m.musicBrainz).holdFor() to achieve the same behavior.
The awaitCps function (line 7) is the wrapper that handles the result of a
CompletableFuture using a continuation. It registers a completion handler on
cf that either resumes cont with the result (res) or an exception (err), and
returns COROUTINE_SUSPENDED to suspend the coroutine until cf completes. The
awaitHandle (line 5) is a reference to the same awaitCps function but with a
different function type, specifically for a suspending function. The holdFor()
function (line 3) then calls awaitHandle with a CompletableFuture, suspending
execution until the result becomes available.

1 class SuspendableCf <T>( private val cf: CompletableFuture <T>) {
2

3 suspend fun holdFor () : T = awaitHandle(cf)
4

5 val awaitHandle = :: awaitCps as (suspend (CompletableFuture <T>) -> T)
6

7 fun awaitCps(cf: CompletableFuture <T>, cont: Continuation <T>) : Any {
8 cf.whenComplete { res , err ->
9 if (err == null) cont.resume(res) // completed normally

10 else cont.resumeWithException(err) // completed with an exception
11 }
12 return COROUTINE_SUSPENDED
13 }
14 }

Listing 1.9: Implementation of an holdFor equivalent to existing Kotlin await.

Note that holdFor() is a simplified implementation, equivalent to await(),
demonstrating that we can handle any callback-based API similarly. The generic
implementation of such a utility is already available in the Kotlin standard li-
brary through: suspendCoroutine(block: (Continuation<T>)-> Unit): T

5 Performance Tests

Table 1 presents the navigation page load analysis from Chrome Lighthouse [3],
comparing the performance when the page load is blocking—waiting for the avail-
ability of all data items before starting to render the HTML—and when PSSR
is applied, emitting HTML as data becomes available, as illustrated in Figure 2.
The First Contentful Paint (FCP) and Largest Contentful Paint (LCP) results
are the same for all three use cases and are presented in the same row. The table
highlights the performance improvements with PSSR. In the "Weather" column,
the use case from Section 3 involves a 1-second interval between items, total-
ing 3 seconds. The "Artist" column relates to the use case in Section 4, where
data from two different sources are fetched concurrently, each with a 1-second
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latency. The "Presentations" column shows the use case of this section, featur-
ing a table with 10 rows, each corresponding to a data item with a 0.2-second
interval, totaling 2 seconds. In three examples, PSSR eliminates degradation in
FCP, resulting in a Lighthouse score of 100 for Weather and Presentations. How-
ever, in the Artist use-case, the Speed Index is still slightly affected, resulting
in a score of 99. The Speed Index metric measures the average progression of
visual completeness of a webpage over time, derived from the integration of a
visual progress curve. For artist use-case, despite the initial HTML structure
and first heading being rendered, delays in displaying the remaining content can
still result in penalization.

Weather Artist Presentations

PSSR × ✓ × ✓ × ✓
Score 64 100 91 99 75 100

FCP and LCP secs 3.2 0.2 1.4 0.2 2.3 0.2
Speed Index secs 3.4 0.9 1.4 1.2 2.4 0.4

Table 1: Navigation page load results of Chrome Lighthouse

To evaluate the scalability of our proposal, we implemented a benchmark
based on the widely recognized work, Comparing Template Engines for Spring
MVC, available in our fork of the GitHub repository 4. This repository serves as
a popular testbed for analyzing the performance differences among various Java
template engines when used with Spring MVC. The web application uses a data
model based on a list of Presentation objects, defined as follows:
class Presentation(val id:Long, val title:String, val speaker:String, val desc:String)

The application’s repository contains 10 instances of Presentation, and each
template generates an HTML document featuring a table with 10 rows. The
resulting HTML code spans approximately 80 lines and occupies a size of around
9 KB. We have made the following modifications to the original implementation:

– Replaced Spring MVC by Spring WebFlux, the low-thread version of Spring.
– Removed template engines that do not support Writer, Appendable, or simi-

lar interfaces, which are necessary for PSSR. This includes Rythm, Ickenham,
Chunk, Handlebars, and Jade.

– Replaced the original data model, List<Presentation>, with its reactive
counterpart, Observable<Presentation> [11].

Depending on whether the template uses blocking or non-blocking I/O, we
may need a different coroutine dispatcher running in a separate thread pool.
This is necessary for the following template engines used in the benchmark:
KotlinX.html, Rocker, JStachio, Pebble, Freemarker, Trimou, and Velocity. Only
Thymeleaf, which uses a specific non-blocking Spring ViewResolver driver, and
HtmlFlow with suspendable templates eliminate the need for a different dis-
patcher to render the template. To simulate the impact of accessing an asyn-
chronous data source and mitigate I/O latency randomness during performance
evaluations we maintain data items in-memory and we introduced a 1-millisecond
interval between Presentation items. This delay is managed on a separate sched-
uler, freeing the handler and its thread to execute other tasks, such as processing
4 https://github.com/xmlet/spring-webflux-comparing-template-engines

https://github.com/xmlet/spring-webflux-comparing-template-engines
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other HTTP requests This approach prevents the bias caused by the poten-
tial inlined execution of asynchronous callbacks, which would lead to sequential
synchronous processing of template rendering, thus avoiding the inevitable con-
text switches present in concurrent I/O scenarios. Performance measurements
are conducted using the Apache HTTP server benchmarking tool (commonly
known as Apache Bench or ab) to simulate concurrent user requests and assess
each template engine approach under varying loads. Our tests were conducted
on a GitHub-hosted virtual machine under GitHub Actions, running Ubuntu
22.04 with 4 processors and 16 GB of RAM. The results are consistent with the
observations collected on a local machine, a MacBook Pro with an Apple M1
Pro. All experiments were run with OpenJDK VM Corretto 17.
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Fig. 9: Performance results in Spring Comparing Templates Benchmark.

The performance results in Figure 9 depict the throughput (number of re-
quests per second) for each template engine, with concurrent requests ranging
from 1 to 128, labeled above each bar. The total number of requests equals
the concurrency value multiplied by 256. A template engine that scales without
bottlenecks should maintain consistent response times as concurrency increases,
with throughput rising proportionally. The benchmarks include HtmlFlow using
suspendable web templates (HF-susp), Thymeleaf-rx with the reactive View-
Resolver driver, and Sync representing all templates (i.e. KotlinX.html, Rocker,
JStachio, Pebble, Freemarker, Trimou, and Velocity) using a synchronous block-
ing IO approach executed in user-level threads on a separate dispatcher. With
4 available cores, we observed that throughput scales across all template en-
gines until reaching 4 concurrent requests. Beyond this point, templates utilizing
non-blocking I/O, specifically Thymeleaf and HtmlFlow, exhibit varying perfor-
mances. These two approaches are the only ones that scale effectively up to 32
threads. However, HtmlFlow consistently scales up to 128 threads and doubles
the performance achieved by Thymeleaf.

6 Conclusion

We introduced the first proposal to integrate the async/await idiom into SSR
web templates, ensuring non-blocking progress and PSSR. Our approach har-
nesses host language features without introducing additional performance or
scalability overhead, while achieving competitive performance levels, as evi-
denced in a recognized benchmark. Despite our non-blocking PSSR technique,
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it currently operates sequentially in terms of processing asynchronous fragments
within web templates. Future work will focus on exploring methods to achieve
concurrent PSSR among asynchronous web fragments.
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