
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Memory Heap

@Transactional

operation(){

...

}

STM Barriers

STM Tasks

STM metadata

:...

:next

:version

...

:...

:next

:version

...

:...

:next

:version

...

:...

:next

:version

...

LICM

AOM

1 2

TRX read-set

write-set

Optimizing Memory Transactions for Large-Scale Programs

Fernando Miguel Santos Gamboa Lopes de Carvalho

Supervisor: Doctor João Manuel Pinheiro Cachopo

Thesis approved in public session to obtain the PhD Degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Merit

Jury:
Chairperson: Chairman of the IST Scientific Board
Members of the Committee:

Doctor João Manuel dos Santos Lourenço
Doctor Luís Manuel Antunes Veiga
Doctor João Manuel Pinheiro Cachopo
Doctor Aleksandar Dragojevic

2014

UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Optimizing Memory Transactions for Large-Scale Programs

Fernando Miguel Santos Gamboa Lopes de Carvalho

Supervisor: Doctor João Manuel Pinheiro Cachopo

Thesis approved in public session to obtain the PhD Degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Merit

Jury:
Chairperson: Chairman of the IST Scientific Board
Members of the Committee:

Doctor João Manuel dos Santos Lourenço
Professor Auxiliar
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Doctor Luís Manuel Antunes Veiga
Professor Auxiliar
Instituto Superior Técnico, Universidade de Lisboa

Doctor João Manuel Pinheiro Cachopo
Professor Auxiliar
Instituto Superior Técnico, Universidade de Lisboa

Doctor Aleksandar Dragojevic
Post Doc Researcher
Microsoft Research, United Kingdom

Funding Institutions:
Fundação para a Ciência e Tecnologia

INESC-ID
Instituto Superior de Engenharia de Lisboa

Instituto Politécnico de Lisboa

2014

To the MMMMM project

i

ii

Resumo

O trabalho de investigação que descrevo nesta dissertação insere-se no âmbito do prob-
lema de sincronização de acessos a memória partilhada em programas de larga-escala.
São bem conhecidas as dificuldades de desenvolvimento de sincronização baseada em
locks de grão fino e por isso, muitos investigadores têm argumentado a necessidade de
encontrar novas abordagens alternativas ao uso de locks. De forma sucinta, o principal
objectivo do meu trabalho é fornecer uma alternativa eficiente às abordagens baseadas
em locks. A minha solução utiliza memória transaccional por software (STM) e foi
implementada numa framework para Java bem conhecida—Deuce STM.

Para tal, eu proponho uma nova abordagem que reduz significativamente os custos
associados a uma STM em programas de larga-escala, para os quais só uma pequena parte
da memória está sob contenção. A minha solução combina duas técnicas de optimiza-
ção inovadoras de uma forma sinergética, que conseguiu pela primeira vez, obter um
desempenho com uma STM igual ao desempenho obtido com as melhores abordagens
de sincronização baseadas em locks, nalguns dos benchmarks mais difíceis de superar.
A minha abordagem e os resultados apresentados mostram que uma STM pode ser a
primeira alternativa eficiente ao uso de locks na sincronização de acessos a memória
partilhada em programas de larga escala.

Palavras-chave: Memória Transaccional por Software, Sincronização de Memória
Partilhada, Optimizações em Tempo de Execução, Programas de Larga-Escala, Progra-
mação Paralela, Programação Concorrente, Algoritmos Concorrentes não Bloqueantes,
Instrumentação de Bytecodes Java, Desempenho, Benchmark

iii

iv

Abstract

The research work that I describe in this dissertation is concerned with the problem of
shared-memory synchronization in large-scale programs. The difficulties of developing
fine-grained lock-based synchronization are well-known and many researchers have ar-
gued for the need of alternative approaches. Simply put, the main goal of my work is to
provide an efficient alternative to such approaches. My proposal is based on Software
Transactional Memory (STM) and I implemented it in a well-known STM framework
for Java—Deuce STM.

To that end I propose a new approach that significantly lowers the overhead caused
by an STM in large-scale programs for which only a small fraction of the memory is
under contention. My solution combines two novel optimization techniques in a syn-
ergistic way, allowing us to get, for the first time, performance with an STM that rivals
the performance of the best lock-based approaches in some of the more challenging
benchmarks. My approach and experimental results show that STMs may be the first
efficient alternative to locks for shared-memory synchronization in real-world–sized
applications.

Keywords: Software Transactional Memory, Shared-memory Synchronization,
Runtime Optimizations, Large-scale Programs, Parallel Programming, Concurrent Pro-
gramming, Non-blocking Concurrent Algorithms, Java Bytecode Instrumentation, Per-
formance, Benchmark

v

vi

Acknowledgments

“Programming is understanding” is a famous quotation from Kristen Nygaard. This
methodology helped me to understand much about computer science and software
engineering. Yet, it is much harder to follow the same approach for a PhD. Never-
theless, my first acknowledgment is for all my colleagues that taught me the art of
programming, including the PROMPT team (from CCISEL) and also my adviser João
Cachopo—the best programmer that I ever known.

I was happy to find an adviser like João Cachopo that is able to take a discussion
from a high level of abstraction—as you expect from an adviser—to the low level details
of the computer. He went much beyond the call of duty in his advising work. He was
my mentor, my colleague, my reviewer and my confessor. I deeply thank you for all
the support.

I would also like to thank my colleagues of ESW for their critical opinions.
I would like to thank FCT for the PROTECT grant that allowed to reduce my

workload labor by 50% for 3 years and gives me time enough to embrance other pro-
fessional challenges, such as launching the first post-graduation in Portugal about pro-
gramming and technology—the PROMPT. Unfortunately, not many people agree with
Kristen Nygaard’s opinion.

Finally and the most important, Mafalda. This is the 3rd time that I write your
name in a dissertation and that expresses all that you mean in my life. Again, I will
finish my acknowledgments with the same quotation that you said to me in 2002, when
I decided to quit my job, after 6 years of working on the information systems industry
and embrace an academic career: “You want to exchange so much, for so few!”.

Yet, this time I agree with you.
During this long journey we decided to have 3 kids and, today, my older daughter

has almost the same age of the work that I developed for this PhD. Now, that I am close
to finish this long task, I hope I can fulfil my father commitments and teach you to ride
your bikes without training wheels. You three (Madalena, Margarida and Miguel) are
the most successful project that we both (Mafalda and Miguel) ever done.

The MMMMM force.

vii

viii

Contents

Resumo iii

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Thesis Scope . 1
1.2 Introduction to STMs . 3
1.3 Why STMs do not perform better? 5
1.4 Thesis Statement . 6
1.5 Main Contributions . 7
1.6 Outline of the Dissertation . 10

2 Motivation, Problem Statement, and Approach 13
2.1 Basic Terminology . 13
2.2 What is the overhead of a transparent API? 14
2.3 How much overhead can we eliminate? 17
2.4 Problem Statement . 20
2.5 General Approach . 21
2.6 Summary . 24

3 Background & State of the Art 25
3.1 STM design alternatives . 25

3.1.1 Buffering mechanism . 26
3.1.2 Ownership acquisition . 26
3.1.3 Concurrency control and validation time 26
3.1.4 Transactional memory accesses 28
3.1.5 API decomposition level . 28

3.2 Runtime Overheads . 29
3.3 Compiler Over-instrumentation . 32

ix

CONTENTS

3.4 Benchmarks for STMs . 35
3.5 Debug and Profiling Tools for STMs 38
3.6 Summary . 39

4 Annotations to Avoid Over-instrumentation 43
4.1 Deuce STM Optimizations . 44
4.2 Over-instrumented Tasks . 45
4.3 New Java Annotations for the Deuce API 47

4.3.1 @NoSyncField annotation . 47
4.3.2 @NoSyncArray annotation . 49

4.4 Performance Evaluation . 50
4.5 Summary . 53

5 Lightweight Identification of Captured Memory 55
5.1 Deuce STM Overview . 57
5.2 Runtime Capture Analysis . 59
5.3 Lightweight Identification of Captured Memory 61
5.4 Extending Deuce STM . 65

5.4.1 Filtering . 67
5.4.2 Storing metadata in-place . 70

5.5 Validation . 71
5.5.1 Performance evaluation . 72
5.5.2 Memory Consumption Evaluation 76

5.6 Summary . 79

6 Adaptive Object Metadata 81
6.1 JVSTM Overview . 82
6.2 The Adaptive Object Metadata approach 85

6.2.1 Reverting Objects . 87
6.2.2 Extending Objects . 88
6.2.3 Reading Objects . 91
6.2.4 Correctness of the AOM Operations 92

6.3 Implementation Approaches . 96
6.3.1 Basics of the Java Object Model 97
6.3.2 Integrating JVSTM with AOM in Jikes RVM 98
6.3.3 Extending Deuce STM . 102

6.4 Validation . 105
6.4.1 Performance Evaluation . 105
6.4.2 Memory Consumption Evaluation 109

x

CONTENTS

6.5 Summary . 109

7 Combining LICM and AOM 113
7.1 Enhancing the JVSTM with both LICM and AOM 114

7.1.1 Vacation . 114
7.1.2 STMBench7 . 115
7.1.3 JWormBench . 116

7.2 Comparing jvstm-aom-licm with other approaches 117
7.3 Summary . 120

8 Conclusions 123
8.1 Main Contributions . 124
8.2 Future Research . 127
8.3 Concluding Remarks and Future Directions 130

A JWormBench 133
A.1 The WormBench benchmark . 134
A.2 JWormBench: A port of WormBench to Java 137

A.2.1 JWormBench applications . 137
A.2.2 STM integration . 139
A.2.3 Correctness test . 141
A.2.4 Contention level . 141

B Extending Jikes RVM’s just-in-time compiler 143
B.1 Architecture of Jikes RVM’s just-in-time compiler 143
B.2 Wrapping a method call in a transaction control flow 144
B.3 Changing the getfield and putfield default behaviors 147

C Extending Deuce STM 151

xi

CONTENTS

xii

List of Figures

2.1 The STMBench7 throughput in three different workloads without long
traversal operations, for three different STM algorithms: LSA, TL2 and
JVSTM, and for two lock-based approaches. 15

2.2 The STMBench7 throughput in three different workloads without long
traversal operations, for JVSTM and two lock-based approaches: a coarse-
and a medium-grained lock. 17

2.3 Overheads incurred by an STM barrier when accesses a transactional
location. 22

2.4 A fast path to access objects that are not under contention. 23

4.1 Speedup of each synchronization mechanism over sequential, non-ins-
trumented code. 53

5.1 Three different transactions accessing a shared object Counter. 62

5.2 Performance improvement from capture analysis filtering technique (tl2-
filter) and LICM technique (tl2-licm) in the Vacation benchmark, when
using the TL2 STM. 64

5.3 The throughput for two workloads (low-contention and high-contention)
of the Vacation benchmark, when using the TL2 STM. 64

5.4 Speedup from capture analysis filtering technique (tl2-filter) and LICM
technique (tl2-licm) in three workloads (read-dominated, read-write and
write-dominated) of the STMBench7 benchmark, when using the TL2
STM. 65

5.5 The throughput for three workloads (read-dominated, read-write and
write-dominated) of the STMBench7 benchmark, when using the TL2
STM. 66

5.6 Speedup from capture analysis filtering technique (tl2-filter) and LICM
technique (tl2-licm) for two workloads. 67

xiii

LIST OF FIGURES

5.7 The throughput for two workloads (N-reads-1-write with smaller write-
sets and N-reads-N-writes with larger write-sets) of the JWormBench
benchmark, when using the TL2 STM. 67

5.8 The STMBench7 throughput for LSA and JVSTM, in the three available
workloads, without long traversal operations. 75

5.9 The JWormBench throughput for LSA, JVSTM, and locks, for two dif-
ferent wokloads. 76

5.10 The STMBench7 memory consumption for TL2, with and without
LICM, in the read dominated workload, without long traversal oper-
ations. 78

5.11 The Vacation memory consumption for TL2, with and without LICM,
in the low contention workload. 78

6.1 Structure that represents a transactional object, instance of a class Point,
using one vbox for each of its fields. 83

6.2 An instance of the class Point in the AOM’s extended layout. 86

6.3 Point object in the compact layout. 86

6.4 Reverting an object that is in the extended layout and that stores the
values 11 and 13 as the most recent, and only, committed values. 88

6.5 An example of a transaction that commits the values 22 and 26 to the
fields x and y, respectively, of a Point, which was in the compact layout
and was storing the values 11 and 13 before. 91

6.6 Object’s compact layout. 98

6.7 Processor register . 99

6.8 The results for Vacation with TL2 and JVSTM, in the two workloads
(low and high contention). 106

6.9 The results for STMBench7 with JVSTM, in the three available work-
loads, without long traversal operations. 108

6.10 The JWormBench throughput for JVSTM and locks, for two different
workloads. 108

6.11 The STMBench7 memory consumption for JVSTM with, and without
AOM, in three different workloads, without long traversal operations. 110

6.12 The Vacation memory consumption for JVSTM with, and without
AOM, in the low and high contention workloads. 111

7.1 The results for Vacation with JVSTM, in the two workloads (low and
high contention). 115

xiv

LIST OF FIGURES

7.2 The results for STMBench7 with JVSTM, in the three available work-
loads, without long traversal operations. 116

7.3 The JWormBench throughput for JVSTM for two different workloads. 117
7.4 The results for Vacation with TL2 and JVSTM, in two workloads (low

and high contention). 118
7.5 The results for STMBench7 with LSA, JVSTM, and locks, in the three

available workloads, without long traversal operations. 119
7.6 The JWormBench throughput for LSA, JVSTM, and locks, for two dif-

ferent workloads. 120

A.1 Example of Worms layout in JWormBenchGui application. 135

B.1 Architecture of the Jikes RVM’s just-in-time compiler 144
B.2 Stack frame before, during and after arguments duplication. 148

xv

LIST OF FIGURES

xvi

List of Tables

2.1 Barriers suppressed for each STMBench7 operation and the correspond-
ing speedup on the operation when we exclude the accessed classes from
being instrumented. 19

4.1 Distribution of the operation execution time accessing each of the five
kinds of memory locations, with Deuce configured to use the TL2. . . 46

4.2 The execution time in milliseconds of each worm operation with and
without useless STM barriers and the corresponding speedup when we
suppress those barriers. 51

4.3 Ratio between worm operations for each of the three workloads’ config-
urations. 52

5.1 Configuration parameters used for each STAMP benchmark. 72
5.2 The speedup of each STM with LICM support for 1 thread and N

threads in the STMAP applications. 73

A.1 13 worm operations provided in the WormBench implementation. . . . 136

xvii

LIST OF TABLES

xviii

Listings

5.1 Resulting class Counter after the instrumentation by the Deuce engine. 58
5.2 The ContextFilterCapturedState class is a context decorator that

adds a transaction fingerprint to any existing STM Context implemen-
tation. 68

5.3 The LICM algorithm performed by the isCaptured function. 69
5.4 Default implementation of an STM barrier for the int primitive type

in regular objects and arrays. 69
5.5 The code skeleton of two read barriers for both objects and arrays, using

runtime capture analysis. 70
5.6 CapturedState class adds an extra field owner to all transactional classes. 71
6.1 Algorithm used by the JVSTM to write-back to a vbox. The commit

method receives the new value and the transaction number correspond-
ing to the version of the new value. 84

6.2 Algorithm to clean the VBoxBody objects committed by that record’s
transaction. 85

6.3 Algorithm to revert an object as part of the GC’s clean task. I show in
bold the line that was added to the clean method. 88

6.4 New write-back algorithm of the VBox class including the extension. I
show in bold the code that was added to the original code of the JVSTM. 90

6.5 Wrapping m call in a transaction control flow 100
6.6 Behavior of getfield operation for atomic objects expressed in IA32. 102
A.1 Guice module for JVSTM configuration 138
A.2 Implementation of step factory for Deuce STM. 140
B.1 genCode() method from TemplateCompilerFramework 145
B.2 genCode(): emitting code to wrap a method call into a transaction. . . 146
B.3 emitSTM_begin() . 147
B.4 Emit code for duplicating method’s arguments. 148
B.5 Machine code for duplicating method’s arguments. 148
B.6 Machine code for trying to commit a transaction. 148

xix

LISTINGS

B.7 genCode() method from TemplateCompilerFramework 149
C.1 Skeleton of the class Agent, with two different entry points: main and

premain, depending on whether the instrumentation is performed in
offline mode or by a Java agent. 152

C.2 ClassEnhancer interface. 153
C.3 Required enhancers to run Deuce with the JVSTM. 153

xx

Chapter 1

Introduction

The research work that I describe in this dissertation is concerned with the problem
of shared-memory synchronization [Mellor-Crummey & Scott, 1991] in large-scale pro-
grams. The difficulties of developing fine-grained lock-based synchronization are well-
known and many researchers have argued for the need of alternative approaches [Sutter
& Larus, 2005; Dice & Shavit, 2006; Adl-Tabatabai et al. , 2006; Herlihy & Shavit, 2008].
Simply put, the main goal of my work is to provide an efficient alternative to such ap-
proaches. My proposal is based on Software Transactional Memory (STM) [Shavit
& Touitou, 1995] and I implemented it in a well-known STM framework for Java—
Deuce STM [Korland et al. , 2010]. Although I developed my solution for the JVM
(Java Virtual Machine), the same approach can be applied to any other managed run-
time environment [Smith & Nair, 2005] based on the same principles of the JVM type
system [Lindholm & Yellin, 1999].

In this introductory chapter, I start by giving a general overview of my work. Then,
I introduce the main features of an STM implementation. After that, in Section 1.3, I
explain some problems that result from the implementation of those features. These
two elements are essential to present my thesis statement, which I shall do in Sec-
tion 1.4. Then, in Section 1.5, I present the main contributions of my work. Finally, I
present the outline of the dissertation.

1.1 Thesis Scope

This dissertation addresses the problem of shared-memory synchronization in large-scale
programs. By large-scale programs I mean enterprise applications that support the

1

CHAPTER 1. INTRODUCTION

needs of the organizations and it includes the definition of Martin Fowler that “Enter-
prise applications are about the display, manipulation, and storage of large amounts of often
complex data and the support or automation of business processes with that data” [Fowler,
2003]. In most cases these applications run on a managed runtime environment [Smith
& Nair, 2005] and are maintained by teams of software engineers that need to answer
quickly to the requirements of the customers. Thus, programmers require tools and
abstractions that hide the low-level details of the software development and let them fo-
cus on the domain problem. Shared-memory synchronization is one of those low-level
details that arises and today most managed runtime environments do not provide any
alternative to the existing lock-based abstractions.

In this context, Software Transactional Memory (STM) [Shavit & Touitou, 1995]
has been the subject of intense research as one of the most promising approaches to
simplify the development of programs with shared-memory synchronization. Yet, cur-
rent STM implementations fail to demonstrate applicability to real-world problems:
In most cases, the performance of an STM on a real-world–sized benchmark is sig-
nificantly lower than the sequential version of the benchmark, let alone its parallel
version using locks. This problem was pointed out by some authors (e.g., Cascaval
et al. [2008]; McKenney et al. [2010]), who raised questions about the practical appli-
cability of STMs to real-world programs. In fact, whereas STMs have shown promising
results when applied to micro-benchmarks, they typically perform worse than coarse-
grained lock-based approaches in larger, real-world–sized benchmarks (e.g. Herlihy et al.
[2006]; Dice et al. [2006]; Riegel et al. [2006]; Felber et al. [2008]; Dragojević et al.

[2009]).

My goal is to provide an STM-based synchronization solution for a managed run-
time environment with the same level of programming easiness of a coarse-grain lock,
which means that I would like to keep the API of the STMs transparent, but with bet-
ter scalability and performance, turning it in an efficient alternative for shared data
synchronization in large-scale programs.

To that end I explore a set of alternative techniques that significantly lower the
overhead caused by an STM in large-scale programs for which only a small fraction
of the memory is under contention. These optimization techniques avoid the STM
overheads in different scenarios and thus, they can complement each other to remove
the further overheads left by the use of the other technique. My approach allows me
to get, for the first time, performance with an STM that rivals the performance of the
best lock-based approaches in some of the more challenging benchmarks. My approach
and experimental results show that STMs may be the first efficient alternative to locks
for shared-memory synchronization in real-world–sized applications.

2

1.2. INTRODUCTION TO STMS

1.2 Introduction to STMs

The idea of providing hardware support for transactions was firstly introduced in 1986
by Knight [Knight, 1986] to check the correctness of parallel execution of Lisp pro-
grams. This model was inspired by database transactions for controlling access to shared
memory in concurrent computing. In database systems, the basic correctness condition
for concurrent transactions is serializability [Papadimitriou, 1979], which states that the
result of executing concurrent transactions on a database must be identical to a result in
which these transactions executed serially. Strict serializability [Herlihy & Wing, 1990]
is a stronger correctness criteria which respects the real-time ordering, in contrast with
the serializability property.

Later, in 1993, this concept was extended by Herlihy and Moss to the notion of
transactional memory [Herlihy & Moss, 1993] and, in 1995, Shavit and Touitou pro-
posed a software implementation of the same idea [Shavit & Touitou, 1995]. Since then,
the research on STMs has been immensely active, with many researchers proposing new
STM implementations such as: McRT-STM [Adl-Tabatabai et al. , 2006], JVSTM [Ca-
chopo & Rito-Silva, 2006], TL2 [Dice et al. , 2006], Haskel-STM [Harris & Fraser,
2003], Bartok-STM [Harris et al. , 2006], DSTM [Herlihy et al. , 2006], RSTM [Marathe
et al. , 2006], TinySTM [Felber et al. , 2008], SwissTM [Dragojević et al. , 2009], Deuce
STM [Korland et al. , 2010], and NOrec [Dalessandro et al. , 2010], among others.

One of the main advantages of STM is its programmatic API based on an atomic

keyword that allows programmers to annotate functions, or code blocks, that should be
performed in the scope of a transaction. This is the approach used by Deuce [Korland
et al. , 2010], in the case of the Java platform, which provides a simple API based on an
@Atomic annotation to mark methods that must have a transactional behavior. This
agrees with the generally accepted idea that STMs should be transparent, meaning that
programmers just need to specify which operations are atomic, without knowing which
data is accessed within those operations.

A transaction accesses memory locations speculatively and executes completely—
commits—or has no effect—aborts—as if the transaction did not execute at all. A trans-
action runs in isolation, meaning that the effects of the writes cannot be visible outside
the transaction until it commits and reads just can observe committed data. To guar-
antee isolation and before committing, the TM runtime must verify that none of the
read locations have been modified by other transactions during its execution – this cor-
responds to transaction validation for STMs that use an invisible reader strategy [Riegel

3

CHAPTER 1. INTRODUCTION

et al. , 2006], for which the presence of a reading transaction is not visible to concur-
rent transactions. In this sense, the conflicts detection can be implemented in a pessimistic
approach through the acquisition of locks that protect the memory locations that are
accessed by a transaction during its execution, or in an optimistic manner allowing ac-
cess to memory locations without any synchronization and just validating at the end
of the transaction whether a concurrent access occurred. In case of conflict, the con-
tention manager has the responsibility of deciding whether to wait or to abort a con-
flicting transaction, while guaranteeing the overall application progress (e.g. Herlihy
et al. [2006]; Marathe et al. [2006]).

To synchronize concurrent accesses to memory locations, some STMs must asso-
ciate with each transactional memory location additional information—location’s meta-
data (e.g., Marathe et al. [2006]; Harris et al. [2005]; Harris & Fraser [2003]; Her-
lihy et al. [2006]))1. Moreover, the location’s metadata is also used by transactions to
keep track of the locations read and written in transaction’s private buffers—read-set
and write-set, respectively—that are an essential part of the transaction validation and
commit operations. The validation indicates whether a transaction would be able to
commit—that is, whether the read-set represents a consistent snapshot. The write-set
can be used when a transaction succeeds and needs to write data into updated locations,
if it follows a redo log approach (e.g. Cachopo & Rito-Silva [2006]; Dice et al. [2006];
Harris & Fraser [2003]), or to undo changes to updated locations when the transaction
aborts, if it follows an undo log approach (e.g. Adl-Tabatabai et al. [2006]; Harris et al.
[2006]).

To maintain the read-set and write-set during the execution of a transaction, the
STM must intermediate all accesses to memory locations from inside a transaction.
So, instead of just accessing a memory location, it requires a call to a specialized STM
function. STM barriers are operations that replace normal accesses to memory locations
and include the invocation to the specialized STM function.

The main properties of an STM are established by the implementation of the pre-
vious features: read-set and write-set, location’s metadata and STM barriers. The choices
made in the design of these features delineate its behavior and induce the overheads
incurred by the STM.

1 However, there are other STMs that do not associate metadata with each memory location, such as
NOrec [Dalessandro et al. , 2010], RingSTM [Spear et al. , 2008], or even simple single-global lock.

4

1.3. WHY STMS DO NOT PERFORM BETTER?

1.3 Why STMs do not perform better?

Instead of just accessing a memory location, an STM barrier usually needs to consult
the location’s metadata and maintain the read-set and write-set. These additional tasks
can introduce a significant overhead in the STM performance and in some cases may
make it perform worse than sequential code.

If we rely on the programmer for introducing STM barriers for every memory ac-
cess, we may get the optimal number of barriers that are necessary to guarantee pro-
gram correctness. But this methodology is not practical for large programs and signif-
icantly impacts one of the STM advantages over lock-based solutions: programmabil-
ity. So, alternative approaches have been proposed, which delegate to a second party
(e.g. STM compiler) the task of automatically translating memory accesses into STM
barriers—this process is often called transactification. This strategy has been seen as a
mandatory feature in STM implementations to turn them into a widely adopted solu-
tion in concurrent programming. Yet, it is not possible to determine in an automatic
form precisely which instructions access shared data. So, the compiler has to instru-
ment the code conservatively, translating every memory access inside a transaction
into a read or write barrier. Thus, the compiler-generated code may execute a signifi-
cantly larger number of unnecessary STM barriers that incur in overhead and reduce
the performance—this problem is known as compiler over-instrumentation [Yoo et al. ,
2008].

Moreover, even when STM barriers are correctly applied, they can execute redun-
dant and unoptimized tasks, such as consulting the location’s metadata instead of di-
rectly accessing a memory location without indirections overheads. This metadata
indirection penalizes accesses to transactional memory locations—resulting in runtime
overheads [Harris et al. , 2006]. Besides the performance penalty, the location’s metadata
also introduces overheads in the amount of memory needed. The additional require-
ments in memory depend on the STM model and design of the data structures that
store the location’s metadata. But typically, the approaches that reduce the additional
amount of memory required for metadata, also induce more false conflicts and unnec-
essary aborts of transactions, penalizing the overall STM performance. The challenge
is to design solutions that require the minimum extra memory while preserving a good
performance.

Another major source of overheads in STMs includes privatization [Spear et al. ,
2007], where access to shared objects is mediated by transactions, and private objects are
only accessible to a single thread. The privatization problem arises when objects move

5

CHAPTER 1. INTRODUCTION

from shared to private access and the STM must avoid correctness violations. Because
the benchmarks that I selected to validate my proposals do not require privatization,
then I did not explore optimization techniques for privatization.

1.4 Thesis Statement

This dissertation’s thesis is that it is possible to substantially reduce the STM-induced
overheads for a large-scale program if we assume that the amount of memory under
contention—that is, memory being concurrently accessed both for read and for write—
is only a small fraction of the total amount of memory accessed by that program.

Namely, that it is possible to achieve that goal by:

• complementing an STM API with additional annotations that let programmers
specify which memory locations are not-shared

• enhancing an STM runtime with an optimization technique that is able to iden-
tify non-shared objects that cannot be identified with the previous approach

• using an adaptive approach to the amount of additional metadata used by any
STM to reduce the STM overheads for non-contended objects

To validate this thesis, I give specific proposals in the dissertation for adding each
of these elements to an STM framework. I describe in detail how these new constructs
integrate and demonstrate, by comparison with the existing techniques to avoid over-
instrumentation, what are the benefits of my proposals.

To show that it is feasible to eliminate some of the STM overheads and simultane-
ously keep its API transparent, I demonstrate a concrete implementation of my pro-
posals in Deuce STM—an STM framework with a transparent API. By providing an
implementation of my proposals within Deuce STM, I am able to test it with a variety
of baseline STM algorithms.

One of the additional benefits of implementing all the techniques is that, having a
practical implementation for all of them allowed me to further validate their effective-
ness, by performing extensive experimental tests for a variety of benchmarks, including
real-world–sized benchmarks that are known for being specially challenging for STMs.

My approach can alleviate some of the major bottlenecks that reduce the perfor-
mance of STMs in many realistic applications and I report results in different bench-
marks to demonstrate that they confirm the assumptions that I used in the design of
the proposals of this dissertation.

6

1.5. MAIN CONTRIBUTIONS

1.5 Main Contributions

Despite all of the intense research on STMs, which advanced significantly not only the
design and implementation of STMs but also the understanding of their shortcomings,
the problems originated by the overheads of STMs and the causes behind them are still
far from solved.

From my analysis, I observed in different applications (e.g. STMBench7 [Guerraoui
et al. , 2007], Vacation [Cao Minh et al. , 2008] and LeeTM [Ansari et al. , 2008])
that the vast majority of the memory locations managed by a program are not under
contention. In these cases, the corresponding memory accesses perform useless STM
barriers and track further metadata that incur in additional overheads.

The key idea of my work is that for non-contended memory we can avoid the
full-blown STM barriers, which should be used only for accessing (the relatively rare)
memory under contention. Instead, for the frequent non-contended memory accesses
we use lightweight barriers that redirect accesses straight to the target memory, thereby
significantly reducing the overheads imposed by the STM. My approach combines dif-
ferent optimization techniques to reduce the overheads of accessing objects that are not
under contention in different situations.

But to achieve these solutions, firstly I had to understand and analyse which kind of
overheads are incurred by transactional locations and which of them I could suppress
through either a manual or automatic mechanism. This research has been a fundamen-
tal part of my work, allowing me to design and build the optimization techniques that
I propose in this dissertation. Next, I describe each of the main contributions of my
work.

The effects on performance of relaxing the transparency of an STM

The first contribution of my work is in the identification of some limitations in con-
current programming environments. For instance, current programming languages do
not allow programmers to express immutability for array elements.2 Thus, instrument-
ing accesses to immutable array elements incurs in unnecessary over-instrumentation.
Part of these scenarios has not been reported yet in previous studies. As a result of

2 For instance, the Java final keyword just avoids the declared variable (array’s reference) from being
modified after its initialization and it does not mean anything about the characteristics of its elements.

7

CHAPTER 1. INTRODUCTION

my research in benchmarks for STMs I ported from C# to Java the WormBench bench-
mark [Zyulkyarov et al. , 2008], which I called JWormBench3 and that helped me to
identify these bottlenecks.

The obstacles that I identified in my work are essentially related to the lack of
knowledge of the STM compiler about the application semantics. To mitigate those
overheads I proposed that an STM should also provide extra annotations that let the
programmers directly convey such application-level knowledge to the compiler. Fol-
lowing this approach the programmer is responsible for the proper placement of the
annotations and the overall correctness of the application. This is similar to what hap-
pens in other solutions [Yoo et al. , 2008; Ni et al. , 2008; Beckman et al. , 2009; White
& Spear, 2010] that propose specific annotations to avoid the excessive instrumentation
of the STM compiler, alleviating the use of STM barriers for every memory access. I
developed an extension to Deuce STM that extends its API with extra annotations and
my results show that we get an improvement of up to 22-fold in the performance of
the JWormBench when we tell the STM framework which data is not transactional.
Actually, not only do we get a speedup when we use a less transparent API, my results
show that the STM performs as good as a fine-grained lock-based approach, which is
particularly easy to implement in JWormBench, but may not be in other applications.
So, this work shows that with the appropriate placement of STM barriers and avoiding
them in useless situations, we can achieve the desirable scalability and performance.
These contributions were published in the proceedings of the 11th International Con-
ference on Algorithms and Architectures for Parallel Processing—ICA3PP11—Volume Part
I [Carvalho & Cachopo, 2011].

Runtime elision of transactional barriers for captured memory

But, if the responsibility of placing STM barriers is shared between the programmer
and the compiler, then an STM cannot guarantee, by itself, the correct synchronization
between atomic blocks. Furthermore, the API of an STM must be transparent and the
programmer should not be concerned with the transactional definition of the memory
locations, but just with the identification of which operations are atomic.

So, my goal is to provide an automatic mechanism that achieves the same results of
the previous solution but without relaxing the transparency of the STM API. To that
end, I developed a new runtime technique for lightweight identification of captured mem-
ory—LICM—for managed environments that is independent of the underlying STM

3Available at https://github.com/inesc-id-esw/jwormbench

8

1.5. MAIN CONTRIBUTIONS

design. Captured memory [Dragojevic et al. , 2009] corresponds to memory allocated
inside a transaction that cannot escape (i.e., is captured by) its allocating transaction.
My approach is surprisingly simple, yet effective, being up to 5 times faster than its
predecessor algorithm [Dragojevic et al. , 2009].

A preliminary version of this solution was published as a poster in the proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of parallel Program-
ming—PPoPP13—[Carvalho & Cachopo, 2013b], whereas a further improved version
was published as a “Distinguished Paper” in the 13th International Conference on Al-
gorithms and Architectures for Parallel Processing—ICA3PP13—[Carvalho & Cachopo,
2013a].

Adaptive Object Metadata for multi-versioning STMs

Yet, even when some useless STM barriers are correctly suppressed there are still some
STM designs that establish additional metadata and, consequentially further indirec-
tions, when accessing transactional objects, including those that are not under con-
tention. This happens, for instance, in the case of multi-versioning approaches [Reed,
1978], which establish that a memory location stores a history of committed values,
instead of a single value. Although being an optimization technique that aims to re-
duce the rate of aborted transactions, it introduces additional overhead in all memory
accesses including those that should not perform STM barriers. To mitigate this prob-
lem, my proposal, which I called adaptive object metadata (AOM) [Carvalho & Ca-
chopo, 2012], includes a new object model that swings objects back and forth between
two different object layouts: the compact-layout, where no memory overhead exists, and
the extended-layout, used when the object may be under contention.

My proposal was implemented in JVSTM [Cachopo, 2007; Cachopo & Rito-Silva,
2006], a multi-versioning object-based STM and I tested it for a wide variety of bench-
marks, including real-world–sized benchmarks that are known for being specially chal-
lenging for STMs. The results obtained thus far show that my assumptions are correct
and under read dominated scenarios the AOM approach can improve the STM perfor-
mance and simultaneously reduce the memory overhead.

I first implemented a prototype of my solution in Jikes RVM [Alpern et al. , 2005]
which confirmed my expectations and allowed me to describe and publish a first pro-
posal of the AOM in the informal proceedings of the 5th Workshop on Programmabil-
ity Issues for Heterogeneous Multicores—MULTIPROG’12 [Carvalho & Cachopo, 2012].

9

CHAPTER 1. INTRODUCTION

After that I developed an improved version of the AOM integrated in Deuce, which
allowed me to make a complete analysis in comparison with other STMs already sup-
ported by Deuce.

Combining these two techniques, LICM and AOM, we can keep the contention-
free execution path as simple as possible (and consequently fast), ideally with the same
overhead of accessing non-transactional objects. Therefore, assuming that the number
of transactional locations that may be under contention is only a small fraction of the
total memory managed by a real-sized application, the overheads introduced by the
STM become negligible. The results that I present for large-scale benchmarks, such as
the STMBench7 and the Vacation, show that the JVSTM enhanced with LICM and
AOM outperforms the throughput of other STMs and can even compete with a fine-
grained locking synchronization approach.

My experimental results confirm my expectations that it is feasible to use STMs for
real-world-sized applications, provided that the STM is not adding unnecessary barriers
and metadata to memory locations that are not under contention. In fact, I believe that
integrating the LICM and the AOM together in a managed runtime may further reduce
the overhead of my approach and provide a significant boost in the usage of STMs.

1.6 Outline of the Dissertation

This dissertation has a total of eight chapters and it is organized as follows:

• Chapter 1 Introduction. This chapter establishes what is the subject of concern
of this dissertation. Specifically, it introduces the core concepts about STMs to
clearly understand the following sections. Furthermore, it presents the main rea-
sons of the overheads incurred by STMs and after that presents the thesis state-
ment. Additionally, I also describe the main contributions of my work and how
this dissertation is organized.

• Chapter 2 Motivation, Problem Statement, and Approach. This chapter expands
on the motivation given in the first chapter and puts this work into concrete con-
texts of development of programs with shared-memory synchronization. Namely,
I present an experimental analysis that shows some of the sources of overhead of
an STM. Finally, it identifies more precisely the problem that this dissertation
addresses and describes the general approach that was followed to solve it.

10

1.6. OUTLINE OF THE DISSERTATION

• Chapter 3 Background & State of the Art. In this chapter I address the main
properties that characterize the implementation of an STM and directly influence
its performance. After that I shall describe the state of the art on efficient support
for software transactional memory.

• Chapter 4 Annotations to avoid over-instrumentation. This chapter describes the
work that I developed to explore the effects on performance of relaxing the trans-
parency of an STM. To that end, it presents a proposal, and an implementation of
an extension to the Deuce API that allows to avoid the useless transactification of
certain classes. Finally, it presents the benefits of this approach using the JWorm-
Bench [Carvalho & Cachopo, 2011] benchmark to evaluate the performance of
Deuce with, and without, programmer annotations.

• Chapter 5 Lightweight identification of captured memory. This chapter presents
a new runtime technique for managed environments that is independent of the
underlying STM design and is able to elide useless STM barriers for transaction
local objects. It describes the implementation of this technique within Deuce
STM and presents experimental results for a wide variety of benchmarks.

• Chapter 6 Adaptive Object Metadata. This chapter proposes an STM implementa-
tion that substantially reduces both the memory and the performance overheads
associated with transactional locations that are not under contention. It describes
an adaptive object metadata approach for a multi-versioning STM, and provides
preliminary results that show an improvement in the performance of workloads
where the number of objects written is much lower than the total number of
transactional objects.

• Chapter 7 Combining LICM and AOM. This chapter presents experimental re-
sults to demonstrate that the combination of two optimization techniques can
achieve a better performance than any of those techniques individually. Specif-
ically, I combine the LICM and AOM optimizations techniques to enhance the
JVSTM.

• Chapter 8 Conclusions. This chapter summarizes the main contributions of this
dissertation and discusses some directions for future research activities.

Finally, I leave some low-level details of my work to appendixes. Appendix A
JWormBench, describes the implementation of JWormBench, which extends the origi-
nal benchmark in several ways, making it more useful as a testbed for evaluating STMs.
Appendix B Extending Jikes RVM’s just-in-time compiler, describes the details of the

11

CHAPTER 1. INTRODUCTION

modifications made to the Jikes RVM’s just-in-time compiler to integrate the JVSTM
and the AOM techniques. Appendix C describes the new infrastructure of enhance-
ment transformations that I added to Deuce STM engine.

12

Chapter 2

Motivation, Problem Statement, and
Approach

From my observations, the poor performance of STMs in large-scale programs is due
to useless STM barriers and to further indirections imposed by additional metadata on
objects that are not under contention. Solving this problem is the main motivation of
my work, which I expect may contribute to a significant boost in the performance of
an STM and, therefore, turn it in an efficient alternative to lock-based synchronization
in large-scale programs.

In Chapter 1, I gave a brief introduction to STMs. Now, I start this chapter by
establishing the basic terminology that I use to describe the motivation of my work.
After that, in Section 2.2, I analyze the overheads incurred by an STM in large-scale
applications and then, in Section 2.3, I present the methodology that I used to under-
stand the reasons of those overheads. Based on the previous observations, which are the
main motivation for my work, I present the problem statement in Section 2.4. Finally,
in Section 2.5, I present the guidelines of the approach that I followed to achieve the
solutions proposed in this dissertation.

2.1 Basic Terminology

To guarantee the consistency of concurrent accesses to shared objects, transactions must
use STM barriers. An STM barrier is a call to the STM runtime that is typically injected
before or after, or even replace, a memory access. A transactional class is a class whose

13

CHAPTER 2. MOTIVATION, PROBLEM STATEMENT, AND APPROACH

code was instrumented such that all memory accesses within its methods are guarded
by STM barriers. A transactional object is an instance of a transactional class.

The main difference between an STM framework with a transparent API and one
with a non-transparent API is that the former implicitly consider all classes as trans-
actional by default, whereas the latter consider all classes non-transactional, except for
those that are explicitly defined as transactional classes. In other words, this means that,
unless the programmer explicitly declares classes as transactional they will be consid-
ered non-transactional.

Note that thread-local objects may need to be transactional too, because if a trans-
action aborts, it needs to revert the objects to their original state, even if they are not
shared with other threads.

2.2 What is the overhead of a transparent API?

Some seminal proposals for STM implementations in Java, such as the DSTM2 [Her-
lihy et al. , 2006], the LSA [Riegel et al. , 2006] or the JVSTM [Cachopo, 2007], use
a non-transparent API where the programmer is responsible for annotating the trans-
actional classes with a specific annotation (e.g. @Transactional) or by defining the
transactional classes as subtypes of a specific base class provided by the STM framework.
This is a very efficient approach, because the STM barriers will be used only for accesses
to instances of the transactional classes. All the other accesses to conventional objects
(instances of non-transactional classes) from within a transaction will directly access
those objects without incurring in the overheads of the STM barriers or the additional
metadata. Assuming that the vast majority of the objects in a real-sized program are
not shared and thus, their classes avoid a transactional definition, then this approach
will incur in a overhead just for a small fraction of the total memory managed by a
program, corresponding to shared objects accessed by transactions.

Yet, this approach contrasts with the generally accepted idea that STMs should be
transparent and that the programmer should be concerned only with the definition of
which operations are atomic and not worry about the definition of the memory loca-
tions accessed by those operations. Nevertheless, the STMs with non-transparent APIs
show performance results that are not achieved by STMs with transparent approaches.
This effect was observed by [Fernandes & Cachopo, 2011], who show that using Deuce
with either the TL2 STM [Dice et al. , 2006] or the LSA STM [Riegel et al. , 2006] in the

14

2.2. WHAT IS THE OVERHEAD OF A TRANSPARENT API?

STMBench7 [Guerraoui et al. , 2007] achieves a throughput up to 100 times lower than
using a coarse-grained lock. Interestingly, however, they also show that by manually
instrumenting the STMBench7 with the JVSTM (rather than with Deuce), it was possi-
ble to get better performance than with the medium-grained locks, which suggests that,
after all, it is possible to get good performance from STMs in large-scale applications.

I ran this same experiment in a machine with 8 cores and hyperthreading, for each
of the synchronization approaches: (1) using Deuce to instrument all of the code and
varying the STM used between TL2 and LSA; (2) using the coarse-grained and medium-
grained lock-based synchronization of the STMBench7; and (3) using an STMBench7
that was manually instrumented to use the JVSTM. Note that when using Deuce (such
as TL2 and LSA), all classes are automatically instrumented, whereas when manually
using the JVSTM only the classes of the effectively shared objects are instrumented.

0
1
2
3
4
5
6

1 357 9

StmBench7 write-dominated

LSA TL2 jvstm-manual coarse-lock medium-lock

0

1

2

3

4

5

6

7

8

9

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

StmBench7 read-write

0

1

2

3

4

5

6

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

StmBench7 write-dominated

0

5

10

15

20

25

30

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

StmBench7 read-dominated

Figure 2.1: The STMBench7 throughput in three different workloads without
long traversal operations, for three different STM algorithms: LSA, TL2 and
JVSTM, and for two lock-based approaches: a coarse- and a medium-grained lock.
In the case of the JVSTM, I manualy instrumented the benchmark, whereas LSA
and TL2 were used with the automatic support of the Deuce engine.

15

CHAPTER 2. MOTIVATION, PROBLEM STATEMENT, AND APPROACH

In the results of Figure 2.1, I show the throughput of the benchmark, when the
number of threads varies from 1 to 16. From these results we can confirm the large
gap in performance between the JVSTM and Deuce (with either LSA or TL2), which
confirms the observations presented in the work of [Fernandes & Cachopo, 2011]. This
gap may be attributed to the difference in the STMs used, to the amount of barriers
that are introduced into the benchmark by each approach (Deuce vs manual), or, most
probably, to a combination of both.

At the time of the work reported in [Fernandes & Cachopo, 2011], Deuce did
not support the integration of an STM that requires additional STM metadata to be
stored in-place within the transactional object, such as the JVSTM. Later, [Dias et al. ,
2012] proposed an API extension to Deuce to support this feature and they provide an
integration in Deuce of the lock-based version of the JVSTM [Cachopo & Rito-Silva,
2006]. In my work I propose a new infrastructure of enhancement transformations for
Deuce, which preservers its original API and I provide an integration of the lock-free
version of the JVSTM (the same that was proposed and used in the results of [Fernandes
& Cachopo, 2011]), in the Deuce framework.

Thus, in my research I complete the analysis of [Fernandes & Cachopo, 2011] and
I also compare the performance between the two approaches to transactification: Non-
transparent versus transparent, using the same STM algorithm—the JVSTM lock-free. I
show in Figure 2.2 the results of running the benchmark manually transactified—label
jvstm-manual—and automatically transactified by Deuce—label jvstm.

The results show that the JVSTM performs better than the other STMs (even when
all the instrumentation is made by Deuce), but the more telling aspect is the huge gap
in performance between using the JVSTM with Deuce or manually: Whereas when
using the JVSTM with Deuce the throughput never gets above the sequential non-
instrumented execution, in the manual case we get a speedup of 3 times, outperforming
even the medium-grained lock-based approach.

Given that the JVSTM used in both cases is exactly the same, this difference must
result from the over-instrumentation made by Deuce. This over-instrumentation has
two consequences: (1) it adds more STM barriers to the execution of the benchmark;
and (2) it adds to each object extra metadata, which needs to be traversed when accessing
those objects. Both affect performance negatively.

My goal is to suppress STM barriers and avoid the metadata indirections in situa-
tions where they are not really necessary. By integrating my optimization techniques
proposals in Deuce I expect to be able to achieve results similar to those obtained with

16

2.3. HOW MUCH OVERHEAD CAN WE ELIMINATE?

0
2
4
6

1 3 5 7 9

jvstm jvstm-manual coarse-lock medium-lock

0

1

2

3

4

5

6

7

8

9

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

StmBench7 read-write

0

1

2

3

4

5

6

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

StmBench7 write-dominated

0

5

10

15

20

25

30

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

StmBench7 read-dominated

Figure 2.2: The STMBench7 throughput in three different workloads without
long traversal operations, for JVSTM and two lock-based approaches: a coarse-
and a medium-grained lock. In the case of the JVSTM, I follow two different trans-
actification approaches: Manually—jvstm-manual—and instrumented by Deuce
engine—jvstm.

the manual use of the JVSTM, albeit without the intervention of the programmer
(thereby, making the STM easier to use). So, first I would like to understand which
STM barriers can we suppress and when and how can we elide them.

2.3 How much overhead can we eliminate?

An STM framework with a transparent API, such as Deuce, cannot predict in advance
which memory locations are shared and therefore, it must use a conservative approach
and place an STM barrier for every memory access. One of the goals of my work is
to identify some scenarios where those barriers are not required and efficiently avoid
them with an innovative technique. I hope that such technique can help to improve

17

CHAPTER 2. MOTIVATION, PROBLEM STATEMENT, AND APPROACH

the performance of an STM. Namely, I would like to confirm: (1) if there are oppor-
tunities to elide unnecessary STM barriers, and (2) if we can improve the performance
of a transactified application by as much as we expect, when we avoid the previously
identified barriers.

So, I started my research by confirming my expectations for a well-known scenario—
eliding STM barriers for transaction local memory accesses. Because transaction-local
memory is private, accesses to it cannot cause conflicts with other transactions and
thus, they do not require STM barriers. Yet, when I suppress STM barriers to access
transaction-local memory, I also need to confirm if the result of the optimized synchro-
nization still preserves the overall consistency of the application. Because the STM-
Bench7 provides a verification test to validate if the overall consistency of the program
was not broken by an erroneous synchronization, I decided to use this benchmark in
my experimental tests. Furthermore, the STMBench7 also fulfils the requirement of
modeling a realistic large-scale application.

To analyze the effect of removing all the STM barriers for transaction local mem-
ory in the STMBench7, I identified the classes that are instantiated inside a transaction
scope, I excluded those classes from being instrumented in the cases where that was
possible without compromising the correctness, and then I measured the speedup ob-
tained.

In STMBench7 the operations traverse a complex graph of objects by using itera-
tors over the collections that represent the connections in that graph. Typically, these
iterators are transaction local and, thus, accessing them using STM barriers adds unnec-
essary overhead to the STMBench7’s operations. To confirm this intuition, I logged the
objects instantiated in the scope of a transaction and I also logged the read-set and the
write-set for each operation of the STMBench7. Thus, I could identify which barriers
access transaction local objects as shown in the results of Table 2.1. Then, I suppressed
those barriers, excluding the whole class definition from being transformed (through
the Exclude system property of Deuce STM) and I measured the speedup for each op-
eration. For that purpose, I included a new execution mode in STMBench7 that allows
me to run the benchmark with just one operation, instead of running a workload that
combines several kinds of operations. By, running the STMBench7 with a single opera-
tion I could calculate the speedup of that operation when I suppress the identified STM
barriers that access transaction local memory.

From Table 2.1, we can observe that there are transaction local objects for almost
all of the STMBench7’s operations (except for op1, op4, op5, op9 and op11) and the

18

2.3. HOW MUCH OVERHEAD CAN WE ELIMINATE?

Operation Type read-only read-write ro rw read-only read-write
Operation Id st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 op1 op2 op3 op4 op5 op6 op7 op8 op9 op10 op11 op12 op13 op14 op15

AbstractList$Itr w w w w w w w w w w w w w w w
AbstractMap$2$1 w w w
HashMap rw rw rw rw
HashMap$Entry rw w w w
HashMap$Entry [] rw w w w
HashSet w w w w
LargeSetImpl w
StringBuilder rw
TreeMap$KeyIterator w w w w w
TreeMap$ValueIterator w
""$AscendingSubMap w w w
""$EntrySetView w w w
""$EntryIterator w w w
Speedup TL2 2.5 1.3 6.1 1.1 3.4 2.4 1.4 3.5 4.4 2.9 3.1 3.1 1.7 1.9 1.9 1.5 1.6 1.5 1.5 1.2

Table 2.1: Barriers suppressed for each STMBench7 operation (r and w denote
read and write barrier, respectively) and the corresponding speedup on the oper-
ation when we exclude the accessed classes from being instrumented. All classes,
except LargeSetImpl, belong to the java.util package.

majority of their classes are related to the iterators of the java.util collections, which
confirms my expectations that these iterators are transaction local. In the same table we
can also observe a large speedup for each operation, of up to 6-fold in the case of the st3,
when we avoid the STM barriers that access those transaction local objects. Note that
there are operations classified as read-only because they do not change shared objects,
but they still need to use write barriers because they change transaction-local objects.
When this happens, an STM cannot optimize the execution of read-only transactions.

These observations confirm my two initial expectations that: (1) there are oppor-
tunities for further optimizations, and (2) we get a speedup when we perform those
optimizations.

Note, however, that the experimental approach that I used to elide STM barriers
is not feasible for some realistic scenarios, because I am preventing the use of STM
barriers for all instances of the classes identified in table 2.1. Yet, if we need to use one
of these classes in the definition of a shared object, then we cannot exclude that class
from using STM barriers anymore.

So, another goal of my work is to find an efficient technique that deals with both
requirements, meaning that it should avoid unnecessary STM barriers for transaction-
local objects, but still preserve STM barriers for shared objects of the same class.

Finally, this optimization technique must be efficient, which means that the over-
head of suppressing these barriers must be lower than the overhead of executing those
barriers. Otherwise, we cannot expect to improve the performance of an STM.

19

CHAPTER 2. MOTIVATION, PROBLEM STATEMENT, AND APPROACH

2.4 Problem Statement

STM frameworks with a transparent API, such as the McRT-STM [Adl-Tabatabai et al.
, 2006] and the Deuce STM [Korland et al. , 2010], provide some built-in optimizations
to avoid the unnecessary use of STM barriers in a few common scenarios. For instance,
they do not use STM barriers to access immutable memory locations, because these
locations cannot be updated and thus, they will never be under contention. In Java,
immutable memory locations are denoted as final fields.

Yet, this approach is of limited use, because the final fields can only be initialized
by the corresponding constructor and cannot be updated by any other method. So, it
cannot be used, e.g., in programs that include a setup phase responsible for initializing
the overall environment out of the constructors’ scope (such as in the STMBench7).

To suppress this limitation, some STM frameworks with a transparent API, such as
Deuce STM, provide an alternative annotation to the final keyword that let program-
mers identify the classes that should not be instrumented by the STM engine. This
approach is useful to avoid STM barriers in two different scenarios: (1) for objects that
are unmodified by transactions, but that are target of updates outside them, and (2) for
objects that are not shared.1

This is a useful approach if we assume that there are just a few cases of objects
to which we would like to avoid the instrumentation. At the same time it keeps the
main API transparent, which is most often used in the majority of situations. So, only
when programmers want to optimize the synchronization process, will they use the
annotations to identify the classes that should not be instrumented.

Yet, this approach has also its own limitations. When we exclude a class from being
instrumented, we are avoiding STM barriers for all instances of that class. So, if there is
only one shared object of that class that is subject of concurrent modifications, then we
cannot define that class as non-transactional anymore. Yet, in this case, we are imposing
STM barriers to all other non shared objects that do not require STM barriers.

Another example of an unsolved problem by this approach is for objects that are
subject to concurrent modifications for a small period of time, but which stay unmodi-
fied after that period and for the rest of the program execution. These may correspond
to shared objects but that are frequently non-contended. Again, in this case, we need to

1 Note, however, that in this case and for thread-local objects you may not preserve the consistency
of an object if it is modified by a transaction that aborts.

20

2.5. GENERAL APPROACH

define the classes of those objects as transactional, because of the possible existence of
concurrent updates for a small period of time, but we will not need to use STM barriers
for the majority of memory accesses in the rest of their life cycles. Yet, we cannot avoid
the definition of transactional classes for those objects.

So, a less transparent API can be a useful approach to avoid over-instrumentation
of classes with non-shared instances or objects that are unmodified by transactions, but,
it is not able to solve all problems of the unnecessary use of STM barriers. To that end,
we require additional optimization techniques that complement the existing ones and
help to eliminate the remaining overheads.

On the other hand, even when a less transparent API is able to eliminate the ma-
jor sources of overhead, that approach may not be feasible in certain scenarios. For
instance, if we do not have access to the classes that we would like to exclude from
being instrumented. So, in these scenarios it would be desirable to have an automatic
mechanism that does not require the programmer intervention.

2.5 General Approach

The main goal of the work that I describe in this dissertation is to optimize mem-
ory transactions for large-scale programs. Because the STMBench7 is a well known
benchmark that models the behavior of a real-world–sized application and because the
JVSTM presents the best performance in the STMBench7 in comparison to the LSA
an TL2, I focused my research in the optimization of the JVSTM. Yet, some of the
optimization techniques that I propose are applicable to any STM, as shown in the
evaluation of those techniques.

In Section 2.3 I showed that the vast majority of the STMBench7 operations execute
useless STM barriers that degrade their performance. Furthermore, I show that when
I avoid those barriers I get an improvement on the performance of those operations,
of up to 6-fold (in the case of operation st3). This speedup is due to the avoidance
of the overheads associated with the STM barriers. Namely, when we avoid an STM
barrier we are suppressing: (1) additional tasks such as maintaining the read-set, lookup
for a written location or write buffering; (2) metadata that adds further indirections to
memory accesses. The example of Figure 2.3 highlights the overheads incurred by an
STM: It shows a transactified method—transactionalOperation—which instead of
directly accessing the memory heap, must perform additional tasks, such as updating

21

CHAPTER 2. MOTIVATION, PROBLEM STATEMENT, AND APPROACH

Memory Heap

void transactionalOperation(){

...

}

STM Barriers

STM Tasks

transaction

STM metadata

:...

:next

:version

...

:...

:next

:version

...:...

:next

:version

...

:...

:next

:version

...

LICM

AOM

Memory Heap

void transactionalOperation(){

...

}

STM Barriers

STM Tasks

STM metadata

:...

:next

:version

...

:...

:next

:version

...

:...

:next

:version

...

:...

:next

:version

...

read-set

write-set transaction

:...

:next

:version

...

:...

:next

:version

...

1 2

1 2

Figure 2.3: Overheads incurred by an STM barrier when accesses a transactional
location: additional tasks and further metadata.

the read-set or the write-set(1), and must maintain the metadata associated to every
memory location (2).

In this work, I explore some optimization techniques to promote the use of a fast
path to access objects that are not under contention and, thus, avoid the overheads
illustrated in Figure 2.3. To that end I must consider different approaches for differ-
ent types of non-contended objects corresponding to transactional classes: (1) whose
instances are not shared and therefore, the whole class can be excluded from being in-
strumented; (2) with both, shared and non-shared instances, and (3) whose instances
are shared but are not under contention in the majority of their life cycle, which means
that they are frequently non-contended.

For the first category of objects we already have an optimization mechanism pro-
vided by Deuce STM, the same that was used in Section 2.3, which allows to define
a class as non-transactional and thus, exclude it from being instrumented. Yet, this
technique has some limitations regarding the coarse granularity of exclusion at the class
definition level. So, if we have a class with both shared and non-shared fields, we have
no way to exclude just part of that class from being instrumented. Another limitation
of the existing Deuce optimization technique is related with non-shared arrays, which
cannot be excluded from being instrumented with the existing Deuce mechanisms.

So, one of the goals of my research is to find a better proposal of a transparent API
that mitigates the previous identified limitations and simultaneously provides a finer
grained control over what to instrument.

Regarding the second group of non-contended objects, it may include transaction-
local objects for instance. In this case, several types of optimization techniques have al-
ready been proposed to avoid the use of STM barriers on memory accesses to transaction-
local objects. The work of Afek et al. [2011] added to Deuce STM a static analysis
technique to enable compile-time optimizations that avoid instrumentation of memory
accesses to transaction local memory. Yet, static compiler analysis is often imprecise

22

2.5. GENERAL APPROACH

and conservative, and thus cannot remove all unnecessary barriers, because program
modules are dynamically loaded, for example, and it is impossible to perform whole
program compiler analysis.

So, in my research I explore alternative techniques to static analysis, such as runtime
analysis that differentiates between shared and non-shared objects in an accurate and
efficient way by avoiding STM barriers when they are not needed.

Finally, the most challenging optimization is to recognize that a shared object is
not under contention for a certain period of its life cycle and thus, avoid the use of
STM barriers. Lets revisit the example shown in Figure 2.3 and point that if a memory
location is not under contention, then we do not need to keep either additional STM
tasks or further STM metadata. So, these are the main overheads that I would like to
avoid for non-contended objects, and to that end, in my work I develop an adaptive
system that lets me discard the STM metadata for non-contended objects.

Note also, that all the optimization techniques that I explore in my work are com-
plementary to each other and can be combined to avoid different scenarios of unneces-
sary use of STM barriers. The example shown in Figure 2.4 ilustrates the idea of those
optimization techniques, which work by eliminating the overheads of an STM and by
providing a direct path for non-contended objects.

Memory Heap

void transactionalOperation(){

...

}

STM Barriers

STM Tasks

transaction

STM metadata

:...

:next

:version

...

:...

:next

:version

...:...

:next

:version

...

:...

:next

:version

...

LICM

AOM

Memory Heap

void transactionalOperation(){

...

}

STM Barriers

STM Tasks

STM metadata

:...

:next

:version

...

:...

:next

:version

...

:...

:next

:version

...

:...

:next

:version

...

read-set

write-set transaction

:...

:next

:version

...

:...

:next

:version

...

1 2

1 2

Figure 2.4: A fast path to access objects that are not under contention (repre-
sented as green segments on the memory heap). In this case the non-contented
objects do not require the STM metadata and we can also avoid the STM tasks if
those objects are also transaction local.

So, for non-contended objects we can automatically redirect accesses straight to the
targeted object and avoid the full-blown STM barriers, which are imposed by the STM
engines for all memory locations. Thus, assuming that in real-sized applications the
vast majority of objects are not under contention, the number of objects that require
STM barriers should be negligible when compared to the total number of objects in the
application. This, in turn, means that if we use lightweight barriers for non-contended
objects, we may have a significant improvement in the performance of large-scale pro-
grams.

23

CHAPTER 2. MOTIVATION, PROBLEM STATEMENT, AND APPROACH

2.6 Summary

STMs are often criticized for introducing unacceptable overheads when compared with
either the sequential version or a lock-based version of any realistic benchmark. My ex-
perience in testing STMs with several realistic benchmarks, however, is that the prob-
lem stems from having instrumentation on memory locations that are not actually
shared among threads.

I started this chapter showing how useless STM barriers can degrade the perfor-
mance of a large-scale application, such as STMBench7. Then, I presented the speedup
achieved by a transactified operation when we suppress those barriers. This analysis
gives us an idea of how much speedup we may expect to achieve with a convenient
STM optimization.

Based on these observations I describe some of the main causes of the overheads of
STM barriers, such as the additional STM tasks and the metadata associated to every
transactional location.

24

Chapter 3

Background & State of the Art

In this chapter I address in Section 3.1 the main properties that characterize the imple-
mentation of an STM and directly influence its performance.

Then I shall describe the state of the art on efficient support for software trans-
actional memory according to the following structure. Section 3.2 introduces some of
the runtime overheads incurred by many STM implementations and also presents some
solutions to mitigate those overheads. Section 3.3 describes some reasons for compiler
over-instrumentation and some approaches to reduce it. In the following, Section 3.4
identifies the set of characteristics that I would like to have in a good benchmark for
an STM system, and discuss to what extent some of the existing benchmarks satisfy
those requirements. Finally, Section 3.5 presents some tools for profiling transactional
applications and describes some contributions in this field.

3.1 STM design alternatives

Over the last ten years, the intense research on STMs produced a number of STM im-
plementations that explore a vast design space of choices for several key aspects of an
STM runtime. A comprehensive analysis of most of these choices is available in [Harris
et al. , 2010]. In the following, however, I shall concentrate on the aspects that I believe
influence the most the performance of an STM. Namely, I shall discuss design alterna-
tives for buffering mechanism, ownership acquisition time, concurrency control, validation
time, transactional memory accesses and API decomposition level.

25

CHAPTER 3. BACKGROUND & STATE OF THE ART

3.1.1 Buffering mechanism

Regarding the buffering mechanism [Dalessandro et al. , 2010] STMs may be classified as
having either a redo-log or undo-log strategy. Some STMs [Cachopo & Rito-Silva, 2006;
Dice et al. , 2006; Harris & Fraser, 2003] just copy the values to the affected memory
locations upon successful commit. Such STMs are referred to as redo-log STMs, because
they redo the writes upon commit. In this approach, the STM read barriers need to
consult the redo-log before returning a value from a memory location.

Other STMs [Adl-Tabatabai et al. , 2006; Harris et al. , 2006] directly update mem-
ory locations speculatively and maintain an undo log that preserves their overwritten
values. If a transaction aborts it must restore the written locations with their original
values kept in the undo log.

3.1.2 Ownership acquisition

Regardless of the buffering mechanism, and before writing to a memory location, a
transaction must acquire exclusive access to that location—ownership acquisition. Ac-
quisition of memory locations can be either eager [Adl-Tabatabai et al. , 2006; Harris
et al. , 2006] or lazy [Cachopo & Rito-Silva, 2006; Marathe et al. , 2004] and it states the
ownership acquisition time [Marathe et al. , 2004] that is also described in some literature
as conflict detection time [Marathe et al. , 2006]. The eager and lazy approaches are also,
respectively, known in [Dice & Shavit, 2006] as encounter order locking and commit
time locking. With eager acquisition a transaction tries to acquire ownership of a loca-
tion when it first writes to that location. In contrast with this, with lazy acquisition a
transaction acquires ownership of locations only at commit time.

Because undo-log STMs store speculatively written data directly in the memory lo-
cations during transaction execution, they must acquire ownership eagerly to prevent
other transactions from either writing to, or reading from those memory locations.
Redo-log STMs can use either eager or lazy acquisition.

3.1.3 Concurrency control and validation time

To acquire ownership of a memory location an STM can use different types of concur-
rency control mechanisms, which in turn affects when validation time occurs: on every
memory access or just before committing. An STM may use a pessimistic concurrency

26

3.1. STM DESIGN ALTERNATIVES

control approach, such as using a read-write lock for every memory location to control
the ownership acquisition. In this case a conflict can be immediately detected when a
transaction accesses a memory location. A read-write lock provides two modes for lock
acquisition: read and write. In the read mode the read-write lock can be held simultane-
ously by multiple readers—shared—, whereas in the write mode it can be held only by a
unique writer—exclusive. The major disadvantage of this concurrency control approach
is that it penalizes all read operations with the overhead of the lock acquisition.

On the other hand, a transactional versioning approach allows read operations to
proceed without the need of acquiring any lock. In this approach, all memory locations
have a version number associated with them, which is incremented every time an object
is updated. In turn, transactions record the version numbers from objects that they read
in a read-set. Then, before a transaction commits it validates the read-set by checking
if all objects read are in the same version that was read by the transaction. If not, the
transaction has to rollback and to undo all changes to updated locations.

When using transactional versioning, the transaction’s validation can occur on ev-
ery memory access or just before committing. Regardless of the approach taken for the
validation time, the validation entails a traversal of the entire read-set. So the overheads
of a validation on every memory access surpasses in large scale the validation before com-
mitting. Currently, the majority of the STMs [Adl-Tabatabai et al. , 2006; Harris et al.
, 2006; Cachopo & Rito-Silva, 2006; Saha et al. , 2006] use a transactional versioning
approach to validate the consistency of the read-set avoiding the lock acquisition for
every read operation. Assuming that read operations significantly outnumber updates
in atomic blocks, then mitigating the overhead of STM read barriers has a considerable
impact in the overall performance.

Some STMs [Dice et al. , 2006; Marathe & Moir, 2008] use the transactional ver-
sioning approach in combination with a global version clock (GVC) to mitigate the over-
head of iterating over the entire read-set. When a transaction commits, it increments
the GVC and attaches its value with each modified memory location. The values of
the GVC establish a serial order between transactions as follows: considering i and j

versions of GVC, such that i < j and Ti, Tj the transactions that commit with ver-
sions i and j, then there is a serial order between transactions Ti and Tj such that Ti

happens-before Tj.

When a transaction begins execution it reads the GVC and stores its current version.
To be a valid transaction, it cannot read memory locations with a version bigger than
the value observed at the beginning of its execution. So, on every read a transaction

27

CHAPTER 3. BACKGROUND & STATE OF THE ART

can immediately verify if that memory access makes the transaction invalid and liable
to abort.

Another technique complementing the transactional versioning approach and GVC
is the multi-versioning. This idea was first introduced by Reed in 1978 in the context of
the distributed execution of atomic actions [Reed, 1983, 1978], which is a well known
subject in the field of database management systems.

According to the multi-versioning approach a memory location stores a history of
committed values, instead of a single value. Each value of the history has attached
the version of the transaction that has committed that value. The major advantage
of this approach is to enable read-only transactions to always commit successfully, be-
cause they can always see a valid snapshot of the memory corresponding to the version
captured at the moment of the beginning of their execution. The drawback of this
approach is the extra memory space required to store the multiple versions for every
transactional location.

3.1.4 Transactional memory accesses

Another key difference among STMs is on transactional memory accesses. STMs may
follow two distinct solutions: (1) following an API-based [Dice et al. , 2006; Cachopo
& Rito-Silva, 2006; Herlihy et al. , 2006; Saha et al. , 2006; Marathe et al. , 2006], or
(2) a compiler-based approach [Wang et al. , 2007; Korland et al. , 2010]. According to
the former, an STM delegates on the programmer the responsibility of using specific
STM functions to access memory locations inside a transaction. In the latter approach
the programmer is unaware of whether the memory locations are accessed inside or
outside a transaction and the STM compiler is responsible for automatically translating
the transactional memory accesses into STM barriers. This process is called transactifi-
cation.

3.1.5 API decomposition level

An STM API can offer more or less specialized functions to handle specific cases of
transactional memory access—API decomposition level. Typically an STM may offer a
general STMRead() method to read transactional memory locations. In this case the
STM provides a homogeneous API [Dice et al. , 2006; Cachopo & Rito-Silva, 2006; Her-
lihy et al. , 2006; Saha et al. , 2006; Korland et al. , 2010]. On the other hand, an STM

28

3.2. RUNTIME OVERHEADS

may offer different functions to read different kinds of transactional memory locations.
For example the API of an STM can provide a specialized STMReadTransactionLo-

cal() that assumes that the value read is thread-local and as a consequence, can opti-
mize away validations of that value. An STM providing such an API has a heterogeneous
API [Yoo et al. , 2008].

3.2 Runtime Overheads

In many STM implementations the write-set is used as a private shadow copy of mem-
ory that must be updated by write operations and consulted by read operations [Harris
& Fraser, 2003; Harris et al. , 2005; Cachopo & Rito-Silva, 2006]. Harris et al. [2006]
have identified this feature as one that incurs in runtime overheads because write opera-
tions are duplicated: once to update the write-set and another to update the destination
memory location, if the transaction commits successfully. Moreover, it forces all read
operations inside atomic blocks to search the write-set, before returning the value of a
memory location.

In their work, they tackle this problem by proposing a direct access STM that allows
objects to be updated directly in the heap—updates in-place—avoiding duplicate writes
for successfully committed transactions and avoiding lookups to the write-set on read
operations. The same approach is proposed by Saha et al. [2006] in the implementation
of McRT-STM, which allows optimistic reads and updates in-place. This solution penal-
izes only aborted transactions, which must undo changes to updated memory locations
with their original value kept in the write-set. But assuming that most transactions com-
mit successfully and reads significantly outnumber updates in atomic blocks, we expect
to have performance gains by keeping the overhead in transactional reads low.

Although the previous works claim that an undo log approach is a better design
choice, there are counter-opinions [Dice & Shavit, 2006; Spear et al. , 2009] propos-
ing the opposite. In the work of Dice & Shavit [2006] they compare the performance
among different STM implementations following different design choices and they ob-
serve that an undo log solution performs well on uncontended data structures, but
degrades on contended ones. This happens due to the eager ownership acquisition im-
posed by the undo log approach. So, under high contended scenarios, leaving locks over
memory locations during entire execution of a transaction may prevent many other
transactions from proceeding successfully and it degrades the overall performance of an
application.

29

CHAPTER 3. BACKGROUND & STATE OF THE ART

Another key improvement of the direct access STM of Harris et al. [2006] is the
integration of transactional versioning that is a fundamental part of its implementation
and allows a transaction to detect conflicting updates. Harris et al. have presented the
direct access STM as being the first one to implement the transactional versioning feature
through an existing object header word, instead of using external tables of versioning
records [Adl-Tabatabai et al. , 2006; Harris & Fraser, 2003; Saha et al. , 2006], additional
header words [Harris et al. , 2005], or additional levels of indirection between object
references and current object contents [Cachopo & Rito-Silva, 2006; Fraser, 2003; Her-
lihy et al. , 2006; Riegel et al. , 2006].

Yoo et al. [2008] identified another runtime overhead related to bookkeeping costs,
which are fixed costs in executing a transaction startup and teardown. Current multi-
thread workloads using locks try to keep critical sections as short as possible. When
these workloads are transactified, the critical sections give rise to extremely short trans-
actions and bookkeeping costs are poorly amortized over the length of the transactions.
In their work with McRT-STM they provide a special execution mode for extremely
short transactions that serializes transactions with a scalable global lock, thereby reduc-
ing the costs due to bookkeeping.

In the same work, Yoo et al. also point the false conflicts problem that occurs due
to the coarse granularity of the conflict detection. This phenomenon may happen for
two different reasons. The first one is because it may not distinguish between two
different addresses on the same cache line. This is comparable to what happens in
object-based conflict detection when it does not distinguish conflicts between fields of
the same object. The second reason can be verified even between addresses in different
cache lines due to the aliasing used to map addresses to transaction records.

Many STM implementations manage the ownership acquisition over memory lo-
cations through the use of an external table of ownership records (orecs). Mapping the
location’s addresses to orecs via a hash function can reduce the required memory space
to store orecs, but can induce false conflicts when it maps different addresses to the same
orec. To reduce the number of cases where this problem occurs, Yoo et al. [2008] pro-
pose to modify the hash function used in McRT-STM and use 4 additional bits per table
entry to store 16 different transaction records into each table entry.

Dalessandro et al. [2010] also tackle the problems induced by the use of orecs and
they propose a new STM implementation — NOrec — that abolishes their usage. The
orecs have a primordial role in the transaction validation and their abolishment im-
plies a new way to detect conflicting accesses to memory locations. So, instead of

30

3.2. RUNTIME OVERHEADS

metadata-based validation, which is the established approach for transaction validation
using orecs, they use a value-based validation. Rather than logging the addresses of orecs,
transactions log the addresses of the locations and the values read. Validation consists
of re-reading the addresses and verifying that locations have not been modified, since
they were read.

Mannarswamy et al. [2010a] also aim to reduce the transactions abort rate due to
false conflicts but using a different approach. Their solution applies to STMs that follow
a lock based conflict detection scheme and that are dependent on the efficiency of the
mapping from accessed memory locations to locks. They have combined the STM
lock assignment feature with another technique originated from other trend, which
proposes to transform the atomic sections into lock based code—compiler assisted lock
allocation (CLA). In their solution they leverage the knowledge of the application’s
data access patterns collected from the CLA program analysis to selectively assign locks
to shared data — selective compiler assisted lock assignment (SCLA).

Another approach to reduce the transactions abort rate is through the use of multi-
versioning, which was firstly proposed in the JVSTM [Cachopo & Rito-Silva, 2006].
One of the main characteristics of the JVSTM is that read-only transactions have very
low overheads, and they never conflict with any other transaction. The multi-versioning
solution was also adopted by the LSA-STM [Riegel et al. , 2006], which uses loca-
tors (indirection between object reference and object’s content) based on the design
of DSTM [Herlihy et al. , 2006]. More recently, the SMV-STM [Perelman & Kei-
dar, 2010] also implements multi-versioning in a design that is most closely related to
TL2 [Dice et al. , 2006], from which they borrow the ideas of lazy ownership acquisition
of updated objects and a global version clock for consistency checking. Among multi-
versioned STMs, the closest to SMV is LSA, but instead of a simple solution to garbage
collection that keeps a constant number of versions for each object, the SMV keeps
versions as long as they might be useful for ongoing transactions as happens in JVSTM.

A different trend aims to reduce the effects of runtime overheads through the re-
distribution of the STM tasks by auxiliary threads. The FastLane [Wamhoff et al. ,
2013] introduces the concept of a master thread that executes transactions pessimisti-
cally without ever aborting, while the helper threads can commit speculative transac-
tions only when they do not conflict with the master. This approach has shown good
results for programs with low thread counts, typically outperforming a classical STM
in the 1-6 threads range.

On the other hand, the STM2 [Kestor et al. , 2011] proposes the division between
application threads (computation) and auxiliary threads that perform STM management

31

CHAPTER 3. BACKGROUND & STATE OF THE ART

operations. So, whereas application threads experience minimal overhead, the auxil-
iary threads, instead, validate read-sets, maintain transaction states and detect conflicts
in parallel with the application threads’ computation. The STM2 shows speedups be-
tween 1.8x and 5.2x over the tested STM systems, on average. Yet, for the Vacation
benchmark, STM2 performs worse than TL2.

3.3 Compiler Over-instrumentation

One of the main reasons for compiler over-instrumentation is due to missing optimiza-
tions opportunities and unnecessary use of STM operations as was described by Harris
et al. [2006]. In their work they propose to mitigate this problem by enhancing the
direct access STM with a new decomposed interface that is used in the translation of the
atomic blocks and exposed to the compiler, giving new opportunities for optimization.

Adl-Tabatabai et al. [2006] also analyze the problems of the compiler over-instru-
mentation and the effects of the compiler optimizations in the performance of software
transactional memory. But instead of optimizing instructions on the compilation pro-
cess of the atomic blocks, they introduce optimizations at just-in-time compilation level
of a Java virtual machine. For that purpose they have extended the compiler interme-
diate representation—IR—with new STM operations— STIR—in such a way that the
existing compiler optimizations can remove redundant STIRs.

Besides this kind of optimizations, it also includes elimination of STM barriers to
access immutable memory locations and access them in the same way as any other
unsynchronized location, avoiding all overheads and reaching a better performance on
its manipulation. For objects allocated inside a transaction—transaction-local objects—
the STM barriers may also be eliminated because these objects are not visible and, thus,
not shared with other transactions until the transaction commits. So, there is no need
to instrument memory accesses for these objects and they can be accessed in the same
way as immutable objects.

These scenarios were also analyzed by Dragojevic et al. [2009], but for an unman-
aged environment. In their work they have introduced new runtime and compiler tech-
niques in the Intel C++ STM compiler. Like the work of Adl-Tabatabai et al. [2006],
they also propose to elide STM barriers for immutable and transaction-local memory.
However in the C/C++ language the support for the declaration of read-only vari-
ables constants using C/C++ keyword const does not prevent from updates to that

32

3.3. COMPILER OVER-INSTRUMENTATION

data, because the const qualifier could simply be cast away when the data is accessed.
Thus, instead of trying to automatically detect which locations are read-only, they ex-
pose new API calls—addPrivateMemoryBlock and removePrivateMemoryBlock—
that allow the programmer to annotate memory regions to be (or stop being) safe for
accessing without STM barriers. To automatically identify transaction-local data they
propose a technique for capture analysis. Captured memory corresponds to memory al-
located inside a transaction, which cannot escape. Thus, accesses to such memory do
not require STM barriers. They provide this feature at runtime and also in the compiler
using pointer analysis, which determines whether a pointer points to memory allocated
inside the current transaction.

They have identified a third case for which some STM barriers can be elided when
accessing thread-local memory. But in this case the STM barriers cannot be completely
removed because a transaction may have to undo changes to updated locations if it
is aborted. Nevertheless, eliding some STM operations, such as open for read, can
alleviate part of the overheads and improve the performance of read operations when
accessing thread-local memory.

Similar optimizations also appear in [Wang et al. , 2007], and [Eddon & Herlihy,
2007], which apply fully interprocedural analysis to discover thread-local data. The
work of Riegel et al. [2008] propose to tune the behavior of the STM for individual
data partitions. Their approach relies on compiler data structure analysis (DSA) to
identify the partitions of an application that may be thread-local or transaction-local.

Besides the previous three cases of memory locations: immutable, transaction-local
and thread-local, there are other cases corresponding to different behaviors that do not
need to be instrumented too, but that cannot be recognized as such via static analysis.
For instance, we may have shared memory locations that are immutable with respect to
the atomic blocks that access them, but that can be updated outside those blocks, thus
preventing them from being declared as immutable. So, these memory locations must
be declared in the same way as any other shared locations and there is no additional
information that lets the compiler know that it does not need to instrument memory
accesses to those locations.

Yoo et al. [2008] analyzed the compiler over-instrumentation problem due to its
lack of application-level knowledge and suggest a solution that let the programmer
directly convey such knowledge to the compiler. Their work is based on McRT-
STM [Saha et al. , 2006], which was also used by Adl-Tabatabai et al. [2006].

33

CHAPTER 3. BACKGROUND & STATE OF THE ART

The McRT-STM compiler generates two copies of code for each atomic function:
a regular version and its transactional twin, which uses read/write barriers for each
memory access. A call to an atomic function inside an atomic block is translated into
a call to its transactional twin. According to the solution of Yoo et al. [2008] they
propose a new tm_waiver annotation to mark a function or block that would not
be instrumented by the compiler for memory access waivered code. Moreover, the
tm_waiver annotation overrides an atomic function, meaning that when an atomic
function is called inside a function annotated with tm_waiver, the function will behave
as if itself was also annotated with as tm_waiver.

So, to prevent the over-instrumentation scenario described above, all functions or
blocks that include memory accesses to that kind of locations should be annotated with
tm_waiver to prevent them from being instrumented.

Likewise, Ni et al. [2008] propose that programmers have the responsibility of
declaring which functions could avoid the instrumentation through the use of the an-
notation tm_pure. The same approach has been followed in managed runtime envi-
ronments, such as the work of Beckman et al. [2009], which proposes the use of access
permissions, via Java annotations, that can be applied on method parameters to describe
how references may behave.

White & Spear [2010] have applied the concept of waivered code to hardware trans-
actional memory adding a new __tm_waiver construct, which provides a weak form
of open nesting. As in the proposal of Yoo et al. [2008] the effects of a waivered block
cannot be rolled back and the programmer is responsible for preventing races between
these blocks and other code.

Afek et al. [2011] aim to reduce over-instrumentation by applying some optimiza-
tion techniques via static analysis. Some of these techniques are common in modern
compilers, such as Partial Redundancy Elimination. These optimizations also include
the automatic elision of STM barriers for transaction local memory. Yet, this approach
does not achieve the same performance as solutions based on heterogeneous APIs, such
as those previously mentioned, which allow the programmer to annotate functions or
blocks of code that are excluded from transactification and thus avoid the use of STM
barriers. In fact, static compiler analysis is often conservative, and thus cannot remove
all unnecessary barriers, because program modules are dynamically loaded, for exam-
ple, and it is impossible to perform whole program compiler analysis.

34

3.4. BENCHMARKS FOR STMS

3.4 Benchmarks for STMs

Benchmarks are essential to test and to compare transactional memory (TM) systems.
But, as realistic benchmarks are scarce, TM implementers often resort to micro-bench-
marks, which are typically too simple to test their systems properly, leading to fair
skepticism about the relevance of their results and the applicability of their approaches.
Thus, the TM research community is in dire need of good, realistic benchmarks. But,
what makes a benchmark good?

Harmanci et al. [2009] distinguish two kinds of experimental evaluations for trans-
actional memory (TM) systems: performance evaluation and semantics evaluation (de-
bugging/testing/verification). Regarding performance, they point out that the major
challenge is the difficulty of finding benchmarks that are simultaneously precise enough
to emphasize the TM features and realistic enough to capture the behavior of most
common applications. Regarding semantics, one of the important requirements of a
benchmark is the presence of a correctness test that is able to verify if an execution has
produced correct results, thereby allowing TM implementers to identify problems with
their solutions. Naturally, a good benchmark should allow both types of evaluation.

On the other hand, Ansari et al. [2008] argue that a TM benchmark should have
as desirable features: large amounts of potential parallelism; several types of transac-
tions; complex contention; and transactions with a wide range of durations (transaction
length) and amount of data accesses (transaction size).

To the above requirements, I add that a good benchmark should be flexible enough
to allow the integration of new synchronization mechanisms without requiring changes
to its source-code. Without this, it is harder to do a fair comparison among different
synchronizations strategies, because porting a benchmark to another TM system may
change its behavior in ways that may affect the results. Moreover, by separating the core
of the benchmark logic from the synchronization code, it allows for an independent and
smoother upgrade path to the benchmark logic.

Another desirable feature that should be provided by a benchmark is to provide
a synchronization mechanism based on a fine-grained locking approach, which may
present a good performance and serves as a reference to achieve by other synchroniza-
tions mechanisms.

To address the lack of realistic benchmarks for TM systems, Guerraoui et al. [2007]
introduced the STMBench7 benchmark: a benchmark for performance evaluation im-
plemented in Java that models a realistic large scale CAD/CAM application. The main

35

CHAPTER 3. BACKGROUND & STATE OF THE ART

feature of STMBench7 is that it uses long transactions and large data structures, becom-
ing a big challenge to the majority of STMs. In fact, the work of Dragojevic et al. [2008]
uses STMBench7 to make a performance evaluation of several STMs and concludes that
this benchmark stretches STMs too much with regard to memory requirements. In par-
ticular, all of the tested STMs in unmanaged (C/C++) runtimes had problems coping
with the size of a big data structure and they all crashed. In Java this problem is re-
duced by the presence of a garbage collector, but there is still a big overhead in memory
imposed by the STMBench7 workloads, as happens for DSTM2 (a Java STM) which
could actually not run at all due to high memory overheads.

The STMBench7 benchmark provides three kinds of workloads that vary in the
ratio of update operations: read-dominated (10% update operations), read/write (40%
update operations), and write-dominated (90% update operations). We can also enable
or disable long transactions for each workload. However, we can neither easily disable,
or enable, specific operations, nor configure the rate between the different kinds of
operations.

The data structure of STMBench7 consists of a large graph of different kinds of
objects and its operations manipulate large parts of this data structure. These operations
vary in the length of the path that is randomly selected from the graph of objects.
Typically, STMBench7 operations focus on object manipulation and there are no tasks
that apply mathematical functions with different degrees of complexity as exist in other
benchmarks, such as STAMP [Cao Minh et al. , 2008] and WormBench [Zyulkyarov
et al. , 2008].

STAMP is a benchmark suite that attempts to represent real-world workloads in
eight different applications. Unlike STMBench7, the STAMP applications are config-
urable at runtime and allow us to vary the level of contention, size of transactions, the
percentage of writes, among other parameters. But this benchmark has several draw-
backs also. First, not all applications make semantic evaluations of the tested STMs.
Second, it is not easy to integrate STAMP applications with some STM algorithms,
such as DSTM [Herlihy et al. , 2006] and JVSTM [Cachopo & Rito-Silva, 2006], be-
cause it requires us to modify its source code and change the type of all memory lo-
cations accessed by a transaction. Finally, it provides no lock-based synchronization
to evaluate the performance of transactional versions in comparison to alternative syn-
chronization mechanisms. Furthermore, there is no Java implementation for STAMP
that is generic enough and able to integrate with any STM framework. The existing
Java port is written in a specific dialect (IRC - Irvine Research Compiler) and requires
manual conversion to be compliant with standard Java.

36

3.4. BENCHMARKS FOR STMS

In the Java world, LeeTM [Ansari et al. , 2008] is an alternative to STMBench7 and
it has many of the desirable properties of an STM benchmark: it is based on a real-world
application and provides a wide range of transaction durations and sizes. The LeeTM
also provides a verifier that validates the consistency of the final data structure. This is
an advantage over STAMP benchmarks, which do not provide a verifier like this one
(except for genome), due to the nature of their computation.

One of the limitations of the LeeTM benchmark, however, is that it does not al-
low extending it to new kinds of operations and research variations of its contention
scenarios. Furthermore, there is no possibility of varying the read/write ratio of the
benchmark, because all of the transactions write something, unlike most applications.
Finally, the LeeTM benchmark does not provide an extensible API to change the syn-
chronization mechanism, forcing programmers to modify its source-code.

WormBench [Zyulkyarov et al. , 2008] is a configurable transactional C# application
that was designed to evaluate the performance and correctness of TM systems. The idea
behind WormBench is inspired by the Snake game, but in this case the snakes are worms
moving and performing worm operations in a shared world of nodes. Each node has a
corresponding pair of coordinates—x, y—stored in a coordinate object.

The WormBench shares all the benefits of LeeTM, such as providing a verifier al-
gorithm (correctness test) and a wide range of transaction durations and sizes. But,
unlike LeeTM, it applies a broad diversity of mathematical operations and it is able
to extend to new ones. Moreover WormBench is totally configurable with regard to:
the percentage of update operations; the kind of operations and proportion between
them; the maximum execution time or number of iterations; the contention level and
synchronization strategy. In addition, the WormBench benchmark has a low complex-
ity domain model (compared to STMBench7), making it easy to understand, and has
a simple API. Still, as shown in [Zyulkyarov et al. , 2008], despite this simplicity, the
WormBench benchmark can still reproduce STAMP workloads with the same charac-
teristics.

Another particularity of WormBench is the ability to previously configure and
record a stream of movements and operations that each worm will perform on the ex-
ecution of the workload. Unlike other benchmarks, such as STMBench7 and STAMP,
the stream of operations is randomly generated before the execution of the workload
and then it can be executed repeatedly. This feature allows to run exactly the same
conditions between different executions of a workload.

37

CHAPTER 3. BACKGROUND & STATE OF THE ART

3.5 Debug and Profiling Tools for STMs

Most of the work in debug and profiling tools [Harmanci et al. , 2009; Herlihy & Lev,
2009; Zyulkyarov et al. , 2010a] focus on techniques for identifying correctness errors,
rather than investigating performance. Researchers tend to focus in the correctness of
applications that use STMs and little has been done to provide tools for profiling and
tuning those applications.

Yoo et al. [2008] considered that many conclusions taken from studies of STMs
on small-scale workloads cannot readily be applied to real-life, large-scale workloads.
Another problem pointed to those studies is in how results are evaluated. For instance,
blindly measuring the overall transaction abort rate does not suffice in fully characteriz-
ing a workload, because simple transactions tend to be executed much more frequently
than complex transactions and the high abort rate for complex transactions is overshad-
owed by the high commit rate of simple ones. To avoid wrong analysis they recommend
considering per atomic block statistics instead of overall statistics.

It is also commonly believed that false conflicts and the work wasted executing
aborted transactions are sources of performance degradation. In this sense, several re-
searchers have developed tools that help programmers to collect and analyze statistical
information about the execution of transactional applications. Lourenço et al. [2009]
have developed a monitoring framework that collects the transactional events from
the execution of an STM into a log file, that is then used by a visualization tool—
JTraceView—to display both statistical information and a time-space diagram. The
statistical charts include information about abort types, abort reasons, wasted work, as
well as other informations.

Chakrabarti [2010a] also refers to the limitations of measuring the STM perfor-
mance just by looking at the total number of aborts, the total execution time and the
scalability trends. Based on the consideration of Yoo et al. [2008] that false conflicts
are a major source of unnecessary aborts in an STM, Chakrabarti developed a solu-
tion that helps the programmer to identify potential conflicts at the transaction level—
coarse—and at the memory reference level—fine. For that purpose he has implemented
general extensions to an STM whereby the transaction loads and stores associated with
a conflict can be identified. As the program executes, it builds a dynamic conflict graph
that will be later used by an offline tool—TM_analyzer—to correlate the data and emit
meaningful information.

Zyulkyarov et al. [2010a] proposed a conflict point discovery technique that identi-
fies the first program statements involved in a conflict and that is similar to the dynamic

38

3.6. SUMMARY

conflict graph approach introduced by Chakrabarti [2010a]. Continuing this work,
Zyulkyarov et al. [2010b] introduced a series of profiling techniques for transactional
applications that provide information about the wasted work caused by aborting trans-
actions, similar to the work of Lourenço et al. [2009]. To make analysis simpler, instead
of reporting conflicting points in machine addresses, they present the results in source
language such as variable names. Their profiling tool also provides another view that
represents the abort relationship between the atomic blocks, similar to the coarse dy-
namic conflict graph of Chakrabarti [2010a]. In addition, this tool also provides a local
summary about the performance of specific parts of the program execution, associates
contextual information with the conflicts, and accounts for all conflicting memory ac-
cesses within aborted transactions.

3.6 Summary

Several researchers have turned their attention to understand the causes behind the run-
time overheads incurred by transactional applications and have pointed some problems
related to the following aspects:

• maintenance of the transaction-private log;

• use of external tables for transaction ownership records;

• coarse granularity of the conflict detection;

• fixed costs in executing a transaction startup and teardown — bookkeeping cost.

Among the variety of known solutions to mitigate the runtime overheads there are
some contradictory proposals, as happens between the undo log approach versus the
redo log approach. In fact, the better solution is closely dependent of the characteristics
of the workload where it is evaluated, leading to different analysis and conclusions, as
Dice and Shavit have described in their work [Dice & Shavit, 2006]. So, there are no
universal techniques that are globally adopted by all STMs implementations.

Another non consensual solution that complements the use of transactional version-
ing in STMs is the multi-versioning approach that was first proposed in JVSTM [Ca-
chopo & Rito-Silva, 2006] and later was also followed by the LSA-STM [Riegel et al.
, 2006] and the SMV-STM [Perelman & Keidar, 2010]. Although the multi-versioning

39

CHAPTER 3. BACKGROUND & STATE OF THE ART

tends to reduce the number of aborted transactions in read-dominated scenarios, be-
cause read-only transactions never conflict with other transactions, it also incurs high
memory overheads to store the multiple versions of a transactional location, attenuat-
ing the benefits of the performance gains.

Another problem that affects STM performance is compiler over-instrumentation,
which can be due to:

• missing optimization opportunities;

• unnecessary use of STM operations;

• lack of application-level knowledge.

These problems were tackled by several researchers proposing different solutions
that include some of the following optimizations:

• elimination of redundant STM operations;

• elimination of STM barriers to access immutable memory locations;

• elimination of open for read operations before accessing transaction-local objects;

• tm_waiver annotation to mark a function or block that would not be instru-
mented.

Finally, to understand more clearly the causes behind the STM overheads it is nec-
essary to have benchmarks and profiling tools that evidence the bottlenecks in STM
implementations. Yet, to the best of my knowledge there is no benchmark that pro-
vides simultaneously the following two very important features: (1) configurability
and flexibility in the integration of new synchronization mechanisms, and (2) a broad
diversity of operations and extensibility to support new kinds of operations.

Among the various benchmarks for STMs, Wormbench stands out by providing
both a simple domain model and the ability to extend it with new kinds of operations
among a wide range of functions with different levels of complexity. These two features
are very helpful to help in the debugging of an STM, because they allow us to have very
fine-grained control over the behavior of the benchmark. Yet, Wormbench has some
limitations that makes it hard to evaluate different STM implementations: It uses a
macro based approach to integrate different STM implementations and it is available
only in C#.

40

3.6. SUMMARY

As previously stated, one of the crucial steps of my work was to identify the main
overheads of an STM. For this, I need a benchmark with the characteristics of Worm-
bench. So, I made a port of Wormbench to Java, extending it in several ways and
making it more useful as a testbed for evaluating STMs. Moreover, my port, which I
called JWormBench,1 was designed to be easily extensible and to allow easy integration
with different STMs. For more information about JWormBench and its design, see
Appendix A.

1Available at: http://inesc-id-esw.github.io/jwormbench/

41

CHAPTER 3. BACKGROUND & STATE OF THE ART

42

Chapter 4

Annotations to Avoid
Over-instrumentation

The loss of performance of an STM observed on a real-world–sized benchmark is often
attributed to the over-instrumentation [Yoo et al. , 2008] made by overzealous STM
compilers that protect every memory access with an STM barrier.

In this chapter I explore an extension of Deuce that allows programmers to add
annotations to their programs specifying that certain memory locations are not under
contention, and, therefore, do not need to be instrumented in the same way as are
shared data under the control of the STM, which incur in large overheads. This con-
trasts with the generally accepted idea that STMs should be completely transparent,
meaning that programmers just need to specify which operations are atomic, without
knowing which data is accessed within those operations. That is the approach taken by
Deuce, which provides a simple API based on an @Atomic annotation to mark methods
that must have a transactional behavior.

Whereas the transparent API would be ideal for programmers, in practice that leads
to unacceptable overheads. So, in this chapter I explore an alternative approach that
allow programmers to have some degree of control on what gets transactified. To show
the benefits of this, I used the JWormBench [Carvalho & Cachopo, 2011] benchmark
to evaluate the performance of Deuce with and without programmer annotations and
show a speedup of up to 22-fold, making the optimized version perform similarly to a
very fine-grained lock-based scheme.

To identify the overheads caused by over-instrumentation and what may be gained
by having finer grained control over what to instrument, I extended the Deuce API

43

CHAPTER 4. ANNOTATIONS TO AVOID OVER-INSTRUMENTATION

with two Java annotations—@NoSyncField and @NoSyncArray—that can be applied
on fields declarations and type declarations, respectively, to avoid over-instrumentation
in certain scenarios.

In this chapter I briefly introduce in Section 4.1 the Deuce STM and why the exist-
ing optimizations are not enough to suppress useless STM barriers. After that, in Sec-
tion 4.2, I describe some scenarios of over-instrumentation in JWormbench that cannot
be solved by the optimizations mechanisms provided by Deuce STM. In Section 4.3,
I introduce the effects and behavior of the new annotations in the Deuce framework,
used to avoid over-instrumentation. Section 4.4 describes the tested configurations of
JWormBench and presents a performance evaluation. Finally, in Section 4.5, I conclude
with a discussion of my approach and results.

4.1 Deuce STM Optimizations

The Deuce STM compiler is provided as a bytecode instrumentation engine imple-
mented with ASM [Binder et al. , 2007] (a Java bytecode manipulation and analysis
framework). Its two major goals are: (1) to integrate the implementation of any syn-
chronization technique, and, in particular, different STMs; and (2) to provide a trans-
parent synchronization API, meaning that a programmer using it just needs to be con-
cerned with the identification of the methods that should execute atomically. For this
purpose, the programmer should mark those methods with an @Atomic annotation (de-
noting an atomic method) and the Deuce engine will automatically synchronize their
execution using the synchronization technique specified by the programmer.

To that end, the Deuce compiler instruments the code region of atomic methods
with calls to the underlying STM runtime. STM runtime exposes an interface to the
compiler that includes functions for starting and ending transactions and for perform-
ing transactional reads and writes of memory locations (STM barriers).

A naive STM compiler translates every memory access inside a transaction into a
read or a write barrier and, therefore, the compiler-generated code may include more
STM barriers than necessary—compiler over-instrumentation [Yoo et al. , 2008]. Fur-
thermore, an STM barrier typically requires orders of magnitude more machine cycles
than a simple memory access. So, whereas the approach taken by STM compilers
ensures the correctness of the whole application, it also degrades its performance sig-
nificantly.

44

4.2. OVER-INSTRUMENTED TASKS

During instrumentation, Deuce STM performs two optimizations to suppress use-
less STM barriers. First, Deuce STM does not instrument accesses to final fields, as
they cannot be modified after creation. This optimization avoids the use of STM barri-
ers when accessing immutable fields, provided that they were correctly identified in the
application code. Yet, there is no similar solution to allow the programmers express
the same intention about the behavior of arrays’ elements. The final keyword used
in an array type declaration just avoids the declared variable (array’s reference) from
being modified after its initialization and it does not avoid the array’s elements from
being modified.

Second, programmers may exclude some classes from being transformed by speci-
fying the names of the classes to be excluded via a runtime parameter (org.deuce.ex-

clude). Alternatively, the programmer may use the annotation—@Exclude—to ex-
clude the annotated type from being instrumented. Yet, and unlike the runtime param-
eter org.deuce.exclude, this approach does not allow instances of excluded classes
to be accessed within a transactional scope. This approach, however, reduces the trans-
parency of the Deuce API. Moreover, it has some limitations: again, it does not work
with arrays, nor can it be used when the same class has both instances that are shared
and instances that are not shared across the transaction’s boundaries.

4.2 Over-instrumented Tasks

To explore the overheads caused by over-instrumentation I used in my analysis the
JWormBench. Using profiling analysis I observed that JWormBench, when instru-
mented with the Deuce framework, spent the majority of the execution time in five
different kinds of memory accesses to both objects and arrays:

1. Coordinate: fields x and y of the coordinate object;

2. Worm: coordinate array;

3. Node: field value of the node object;

4. World: node matrix;

5. Aux array: auxiliary array to the function that defines a worm operation.

45

CHAPTER 4. ANNOTATIONS TO AVOID OVER-INSTRUMENTATION

Table 4.1 shows the percentage of time spent on each kind of memory access, per op-
eration. From all these operations, only the Sort and Transpose are read-write, whereas
the remaining operations are all read-only. In this analysis I have excluded some read-
write operations that are just the combination of two read-only operations in the form
of replaceROwithRO, such as, ReplaceMedianWithMin. So, in these cases the distribu-
tion of time consumption for this kind of read-write operations is equal to the sum of
the distributions in the corresponding read-only operations.

These results were collected with Deuce configured to use the TL2 and with just
one worker thread. Of all the memory locations depicted in Table 1, only the third
location—Node—should be instrumented, as it is the only one that is shared and updated
by concurrent transactions. So, I confirm my expectations that a significant fraction of
the time spent by a worm operation is wasted in the execution of useless STM barriers.

Operation (1) Coordinate (2) Worm (3) Node (4) World (5) Aux array (6) Flow

0 Sum 31% 18% 18% 33% 0% 0%
1 Average 38% 14% 15% 32% 0% 0%
2 Median 2% 4% 1% 2% 90% 1%
3 Minimum 27% 23% 15% 35% 0% 0%
4 Maximum 30% 27% 12% 31% 0% 0%
11 Sort 4% 3% 1% 5% 87% 0%
12 Transpose 26% 20% 6% 27% 18% 2%

Table 4.1: Distribution of the operation execution time accessing each of the five
kinds of memory locations, with Deuce configured to use the TL2 and with just
one worker thread. There is an extra column—Flow—that collects the time spent
in the execution of the control flow of the transactions

Yet, we cannot easily avoid these useless STM barriers with the current API of
Deuce. Essentially, these memory accesses are limited to objects, or arrays, that are:

• thread local, meaning that the most part of the instrumentation incurred by an
STM when accessing those fields could be attenuated, except for the undo log
that is still required to revert the updated data if the transaction aborts (e.g.,
Coordinate).

• transaction local, and, therefore, are not shared among different transactions (e.g.,
Aux array). So, these objects are private to a single transaction and do not need
to be synchronized and thus, do not have to be instrumented.

46

4.3. NEW JAVA ANNOTATIONS FOR THE DEUCE API

• unmodified inside transactions, but are still subject to changes outside them (e.g.,
Worm and World). In many situations these objects have an initialization phase
where they are modified, but after a quiescent period they become immutable.
Yet, we cannot define this kind of locations as final, because it prohibits changes
to the declared fields out of the constructor, which can be too restrictive for
some applications. Moreover, for arrays, the final keyword just restricts the
behaviour of the array’s reference and does not forbid any manipulation of its
elements.

4.3 New Java Annotations for the Deuce API

To explore what may be gained by having more fine-grained control over what to in-
strument, I extended the Deuce API to help the Deuce engine avoid STM barriers for
both objects and arrays. For that purpose, my solution includes two Java annotations,
@NoSyncField and @NoSyncArray, which should be parametrized with a value of the
enum type NoSyncBehavior. This parameter specifies the behavior of the annotated
memory location as immutable, transaction local, or thread local.

The information given by the parameter of the type NoSyncBehavior is also rel-
evant in a debug mode in which the Deuce framework verifies if the applied behavior
to the annotated memory location is consistent with the way how that location is ma-
nipulated during the execution of the program. Under the debug mode the Deuce
framework alerts the end user if a location is accessed in such a way that violates the
behavior specified by its annotation.

In the following I describe the effects of these annotations in the elimination of
over-instrumentation.

4.3.1 @NoSyncField annotation

The @NoSyncField annotation can be applied to fields’ declaration in three different
ways: @NoSyncField(Immutable), @NoSyncField(TransactionLocal) and @No-

SyncField(ThreadLocal). Annotating a field with @NoSyncField(Immutable) has
an effect similar to the Java final keyword on field declarations. Both make the Deuce
framework avoid instrumentation when accessing those fields. However, the final

keyword has another effect at the Java level, prohibiting changes to the declared field

47

CHAPTER 4. ANNOTATIONS TO AVOID OVER-INSTRUMENTATION

after its initialization. This behavior could be too restrictive for memory locations that
are unmodified inside transactions, but are still subject to be modified outside them.
Unlike the final keyword, annotating with @NoSyncField(Immutable) just reports
that the annotated field should not be updated inside a transaction, thus avoiding any
synchronization when accessing it.

Sometimes, when we are applying this annotation we may also be interested in
providing weak atomicity [Martin et al. , 2006] (i.e., not guaranteeing that concurrent
accesses to a shared memory location from both inside and outside a transaction are
consistent).

Another use of the @NoSyncField annotation is to annotate fields that are not
shared among different threads. So, these fields could be private to a single trans-
action or to a single thread. In the first case the fields should be annotated with
@NoSyncField(TransactionLocal) meaning that the annotated fields do not need
to be synchronized and therefore do not have to be instrumented. In the second case
the fields should be annotated with @NoSyncField(ThreadLocal) meaning that most
of the instrumentation incurred by an STM when accessing those fields could be omit-
ted, with the exception of the undo log, which is still required to revert the updated data
if the transaction aborts.

The effects of the @NoSyncField(TransactionLocal) on Deuce framework are
the same as the @NoSyncField(Immutable): Both avoid instrumentation of the anno-
tated memory locations when they are accessed inside a transaction. They differ only
under the debug mode and in the way in which the Deuce framework verifies if the
specified behavior is fulfilled by the transactified program: the former is violated if the
annotated location is accessed by a different transaction from the one that have initial-
ized the location and the latter is violated if the annotated location is updated inside of
any transaction.

The @NoSyncField(ThreadLocal) can be applied on the declaration of memory
locations that have affinity to only one thread. Therefore, these memory locations do
not need to be instrumented in the same way as are the memory locations that are
shared among different threads. In this case, for thread local data, the transactions can
read and update these memory locations in-place avoiding the overhead of maintain-
ing a read set and write set. However, the transactions still need to keep an undo log
where they register the original values of the updated memory locations. Then, when
a transaction aborts it uses the undo log to revert the data that was updated.

48

4.3. NEW JAVA ANNOTATIONS FOR THE DEUCE API

4.3.2 @NoSyncArray annotation

Annotating arrays is more challenging than annotating object fields. One difficulty is
to find a way to attach the intention—array elements are immutable, or transaction local,
or thread local—to an array declaration. Let us review the approach followed in the
previous subsection to understand the differences. In that case a field will be annotated
with an annotation @NoSyncField. Then, Java bytecodes for field manipulation have
access to the field’s metadata and at compile time we can check the field’s annotations
and decide whether to instrument or not the access to them.

The main difference is that Java bytecodes for arrays manipulation receives an array
reference as parameter and not the declared array variable. So, there is no easy way for
the compiler to know the array variable at the moment it processes a bytecode for array
access.

An alternative approach is to attach the intention to the array object instead of the
array variable. However, this strategy postpones the decision from compile-time to
runtime and will not eliminate all the unnecessary over-instrumentation on arrays.

As we cannot annotate the array type, I adopted a different solution: to annotate
the type of the array’s element with the @NoSyncArray annotation . This approach has
limitations too because instead of annotating the array declaration I propose to do that
in the declaration of the type of the array’s element.

The @NoSyncArray(Immutable) annotation can be applied to the type of the ar-
ray’s element, whose elements are immutable during the array’s life cycle. Note that
the final keyword for arrays declaration has a distinct effect from the one that is spec-
ified by the @NoSyncArray(Immutable). In the case of the final keyword, it just
avoids the declared variable (array’s reference) from being modified after its initializa-
tion and it does not mean anything about the characteristics of its elements. Whereas
the @NoSyncArray(Immutable) annotation declares that the elements of the array will
not change inside a transaction.

Finally, we can also use @NoSyncArray to annotate the declaration of the type of the
array’s elements as @NoSyncArray(TransactionLocal) or @NoSyncArray(Thread-

Local) to, respectively, denote that the array’s elements are private to a single transac-
tion or to a single thread.

One limitation of this solution is that it is restricted to arrays of non-primitive
types, as we have no way to annotate primitive types. One possible alternative, which

49

CHAPTER 4. ANNOTATIONS TO AVOID OVER-INSTRUMENTATION

is still compliant with my optimization technique, is to use a wrapper class for each
primitive type. However, this approach has an additional overhead by the extra in-
direction incurred by the wrapper object. Depending on each situation, we should
evaluate the advantages of avoiding useless STM barriers, over the disadvantages of the
extra indirections incurred by the use of wrapper objects.

Outside a transaction, it is more efficient to access a primitive type array than access-
ing the corresponding array of wrapper types. On the other hand, when accessing the
array within a transaction, the overhead of the additional indirection incurred by the
wrapper object is lower than the overhead of the useless STM barrier, which we may
avoid with my optimization technique for non-shared and immutable arrays. So, we
should replace a primitive type array by the corresponding array of wrapper types only
if the number of useless STM barriers is bigger than the number of accesses performed
outside a transaction. This condition is always true for transactional-local arrays, be-
cause there are no accesses to that array outside a transaction. This means that it is
always better in terms of performance to use the optimization in this case, which may
be accomplished by: (1) replacing primitive type arrays with the corresponding array
of wrapper types, and (2) annotating the wrapper type with the @NoSyncArray annota-
tion. For thread-local and immutable arrays, however, that condition is not always true
and, thus, we should decide on whether to use this optimization technique depending
on the expected pattern of accesses to the array.

4.4 Performance Evaluation

Using the new annotations of the Deuce API we can reduce the overhead incurred by
the STM barriers in the scenarios 1, 2, 4, and 5 of Table 4.1 on page 46. In the results
of Table 4.2 on the next page I show the difference between the performance of each
operation whether it performs all useless STM barriers or not, and the corresponding
speedup. From these results we can see the speedup achieved when we exclude useless
STM barriers, which is between 5 and 38.4.

To evaluate the effect of my approach on the performance and the scalability of the
JWormBench benchmark, I compared my optimized version of the Deuce framework
against the released version 1.3.0. both using the TL2 STM. Simultaneously, I also made
a comparison of the JWormBench with the lock-free implementation of JVSTM [Fer-
nandes & Cachopo, 2011], but manually transactified (without using Deuce). In my

50

4.4. PERFORMANCE EVALUATION

Sum Avg Med Min Max Sort Trans

All STM barriers 2.220 2.900 49.160 2.820 2.610 42.760 5.660
Excluding useless STM barriers 380 450 1.280 480 520 1.050 420
Speedup 5.8 6.4 38.4 5.9 5.0 40.7 13.5

Table 4.2: The execution time in milliseconds of each worm operation with and
without useless STM barriers and the corresponding speedup when we suppress
those barriers.

analysis I also include an implementation of a fine-grained lock-based step for JWorm-
Bench, which acquires locks for all the nodes under a worm’s head in a pre-specified
order to avoid deadlocks (I use an object’s monitor per node).

The testing workload has a world’s size of 512 nodes and 48 worms with a body’s
length of one node and the head’s size varying between 2 and 16 nodes, corresponding
to a number of nodes under the worm’s head between 4 and 256. The length of the
body affects collisions between worms and I excluded that behavior for this analysis.
The size of the head affects the size of transactions for each worm operation according
to the Table A.1 on page 136.

To evaluate the overall performance of the benchmark, I have used three different
configurations. In all configurations I keep the ratio between read-write and read-only
worm operations of 20%-80%, as depicted in Table 4.3 on the next page. The configura-
tions tested are as follows:

1. Combination of read-only and n-reads-1-write worm operations, excluding oper-
ations based on the median operation. So, these worm operations are not very
computationally intensive, having complexity O(n), and the write-set for all read-
write transactions has a length of one (n denotes the number of nodes under the
worm’s head).

2. Equals to the previous configuration, but including operations based on median.
So, this configuration is more computationally intensive than the previous one,
with 4 worm operations having complexity O(n2).

3. Combination of read-only and n-reads-n-writes worm operations. Two of these
operations have complexity O(n2) and the size of the write-set, for read-write
transactions, is equal to the number of nodes under worm’s head.

51

CHAPTER 4. ANNOTATIONS TO AVOID OVER-INSTRUMENTATION

Configurations
worm operation 1 2 3

read-only

Sum 20% 16% 16%
Average 20% 16% 16%
Median 16% 16%
Minimum 20% 16% 16%
Maximum 20% 16% 16%

n-reads-1-write

ReplaceMaxWithAverage 7% 4%
ReplaceMinWithAverage 7% 4%
ReplaceMedianWithAverage 3%
ReplaceMedianWithMax 3%
ReplaceMedianWithMin 3%
ReplaceMaxAndMin 6% 3%

n-reads-n-writes
Sort 10%
Transpose 10%

Table 4.3: Ratio between worm operations for each of the three workloads’ con-
figurations.

The tests were performed on a machine with 4 AMD Opteron(tm) 6168 processors,
each one with 12 cores, resulting in a total of 48 cores. The JVM version used was the
1.6.0_22-b04, running on Ubuntu with Linux kernel version 2.6.32.

The charts of figure 4.1 on the facing page depict the speedup of each synchro-
nization mechanism over sequential, non-instrumented code. These results show that
Deuce 1.3.0 just scales for the first configuration, without the presence of more com-
putationally intensive worm operations, such as median and sort. On the other hand,
my optimization proposal for the Deuce framework scales in the three scenarios and
performs better than the previous versions: 2 times better in the first configuration and
22 times in both configurations 2 and 3.

In comparison with the fine-grained lock approach, the optimized version of the
Deuce framework has a better performance for configurations 1 and 2, but is almost
equals in performance for configuration 3. The number of locks acquired by the TL2
with the optimized version of Deuce should be approximately the same of the fine-
grained lock approach. Yet, whereas the latter uses an object’s monitor per node, the
former uses a lock-based hash table. So, although the TL2 approach may have false con-
flicts, it is simultaneously more lightweight and therefore it gets a better performance
in configurations 1 and 2, because these workloads have a very low conflict rate.

52

4.5. SUMMARY

fine-lock Deuce 1.3.0 JVSTM Deuce Opt

0,00

2,00

4,00

6,00

8,00

10,00

1 8 16 24 32 40 48

S
p

e
e

d
u

p

Threads

Configuration 1

0,00

2,00

4,00

6,00

8,00

10,00

12,00

1 8 16 24 32 40 48

S
p

e
e

d
u

p

Threads

Configuration 2

0,00

2,00

4,00

6,00

8,00

10,00

1 8 16 24 32 40 48

S
p

e
e

d
u

p

Threads

Configuration 3

Figure 4.1: Speedup of each synchronization mechanism over sequential, non-
instrumented code for each of the configurations shown in Table 4.3

The worst performance verified for the STMs in configuration 3 may happen be-
cause the size of the write-set in this case is bigger than in the previous ones, increasing
the number of conflicts and causing much aborted transactions.

4.5 Summary

The solution that I explore in this work is to enable programmer to convey to STM
that some memory locations are not to be manipulated transactionally. So, Deuce STM
may take advantage of the information given by the programmer to eliminate some of
the STM barriers that access those memory locations.

This approach reduces the transparency of the STM, which is one of its advantages
over lock-based approaches, but it proves to be able to get huge benefits performance-
wise. In fact, I have been able to get a 22-fold improvement on the throughput of a

53

CHAPTER 4. ANNOTATIONS TO AVOID OVER-INSTRUMENTATION

realistic benchmark. This result is consistent with other observations made on bench-
marks that use a similar approach (e.g., the results of the JVSTM on the STMBench7
reported in [Fernandes & Cachopo, 2011]).

Actually, not only do we get a huge speedup when we use a less transparent API,
my results show that the STM performs better or as good as a fine-grained lock-based
approach, which is particularly easy to use in JWormBench, but may not be in other
applications. Still, I argue that the lock-based approach is harder to develop and get
right than the use of annotations to identify non-transactional memory: To implement
a lock-based approach, we need not only to identify the shared resources, as in my
approach, but we have to be careful about getting the locks for all of the accessed
resources, and doing it in the correct order. So, even if we are losing some of the
transparency of the STM approach, I believe that this may be a reasonable tradeoff
between easiness of development and performance.

54

Chapter 5

Lightweight Identification of Captured
Memory

In Chapter 4, I described my work to explore a new optimization technique based
on a new STM API that allows programmers to specify which types should not be
transactified, and thus, avoid useless STM barriers [Carvalho & Cachopo, 2011].

The main idea of this optimization technique is to decompose the STM’s API in
heterogeneous parts that allow the programmer to convey application-level informa-
tion about the behavior of the memory locations to the instrumentation engine. The
same approach is the basis for other optimization techniques proposed by several re-
searchers (e.g. [Harris et al. , 2006], [Yoo et al. , 2008] and [Beckman et al. , 2009]).
Yet, this approach contrasts with one of the main advantages of an STM, which is to
provide a transparent synchronization API.

So, although effective, the proposal of an extended STM API for Deuce has the fol-
lowing limitations: (1) it delegates on the programmer the responsibility of identifying
the types whose instances are not shared; (2) it may not be applicable for types pro-
vided by a third-party library with restricted visibility, and (3) it is not feasible if we
have both shared and non-shared objects of the same type.

To address these limitations, other approaches propose automatic mechanisms based
on compile-time and runtime techniques that identify and avoid useless STM barriers.
For instance, Afek et al. [Afek et al. , 2011] added to Deuce STM a static analysis tech-
nique to enable compile-time optimizations that avoid instrumentation of memory
accesses in several situations, including to transaction local memory. Yet, this approach

55

CHAPTER 5. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

does not accomplish the performance improvements shown by solutions based on het-
erogeneous APIs. However, I argue that automatic approaches that keep the trans-
parency of the STM API are better suited to the overall goal of STMs. So, I propose to
tackle this problem and find a technique based on runtime analysis that automatically
and efficiently elide STM barriers for transaction local memory.

My work is based on the proposal of Dragojevic et al. [Dragojevic et al. , 2009],
which introduces the concept of captured memory as memory allocated inside a transac-
tion that cannot escape (i.e., is captured by) its allocating transaction. Captured memory
corresponds to newly allocated objects that did not exist before the beginning of their
allocating transaction and that, therefore, are held within the transaction until it com-
mits. They use the term capture analysis (similar to escape analysis) to refer to a compile-
or runtime-time algorithm that determines whether a memory location is captured by
a transaction or not.

Given the lack of demonstrable effectiveness of the static compiler analysis [Afek
et al. , 2011], here I am interested in exploring the proposal of Dragojevic et al. [Drago-
jevic et al. , 2009] for runtime capture analysis, adapt it to a managed runtime environ-
ment and make it more efficient. Note, however, that my proposal cannot be applied
to unmanaged languages such as C/C++, which the seminal paper targets.

The main contributions of this chapter are:

• A new runtime technique for lightweight identification of captured memory—LICM—
for managed environments that is independent of the underlying STM design
(Section 5.3). My approach is surprisingly simple, yet effective, being up to 5
times faster than the filtering algorithm proposed by [Dragojevic et al. , 2009]
(which I briefly introduce in Section 5.2).

• I implemented the LICM in Deuce STM. My implementation uses a new infras-
tructure of enhancement transformations, which is described in Section 5.4. By
providing an implementation of my proposal within Deuce STM, I was able to
test it with a variety of baseline STM algorithms, namely, LSA [Riegel et al. ,
2006], TL2 [Dice et al. , 2006], and JVSTM [Fernandes & Cachopo, 2011].

• I performed extensive experimental tests for a wide variety of benchmarks (Sec-
tion 5.5), including real-world–sized benchmarks that are known for being spe-
cially challenging for STMs. The goal of these tests was not only to evaluate the
performance of my proposal, but, more importantly, to assess the usefulness of
the runtime capture analysis, thus completing the analysis of [Dragojevic et al. ,

56

5.1. DEUCE STM OVERVIEW

2009] about how many of the memory accesses are to captured locations. Besides
the STAMP, I also analyze the STMBench7, and the JWormBench, which were
not included in [Dragojevic et al. , 2009].

• For the first time, in some of the more challenging benchmarks and without
relaxing the transparency of the STM API, the LICM makes STM’s performance
competitive with the best fine-grained lock-based approaches. Moreover, given its
lightweight nature, it has almost no overhead when the benchmark presents no
opportunities for optimizations.

The next Section introduces the basics of Deuce STM necessary to understand the
adaptation of the runtime capture analysis technique. After that, in Section 5.2 I de-
scribe the original proposal of [Dragojevic et al. , 2009] in Deuce STM framework.
Then, in Section 5.3 I present the design of a new runtime technique for lightweight
identification of captured memory. Section 5.4 explains the required modifications to
Deuce STM to support the LICM technique. Finally, in Section 5.5 I present an exper-
imental evaluation for a variety of benchmarks.

5.1 Deuce STM Overview

Deuce STM is an STM framework for the Java environment, provided as a bytecode in-
strumentation engine implemented with ASM [Binder et al. , 2007]. In the Deuce STM
framework the synchronization mechanism is defined by a class that implements the
Context interface. This interface specifies the event handlers API that each STM imple-
mentation must provide and that is used by the code instrumented by Deuce to notify
the STM whenever one of the following events occurs during the execution of the in-
strumented program: the begin of an atomic method (init event handler); the end of
an atomic method (either commit or rollback event handlers); or the access to a mem-
ory location made inside of a transactional scope—i.e., an atomic method or any method
invoked in the scope of an atomic method—(beforeReadAccess, onReadAccess, and
onWriteAccess event handlers).

On the other hand, the class ContextDelegator defines the STM barriers as a set
of static methods that delegate the calls from the dynamically instrumented code to
the event handlers of the class implementing the Context interface. To use memory
barriers only when accessing memory from within a transactional scope, Deuce creates
a duplicate of every method—a transactional method—where every memory access is

57

CHAPTER 5. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

replaced by the invocation of the corresponding STM barrier. Depending on whether
a method is invoked from inside or from outside a transactional scope, then either the
transactional version or the original version will be invoked, respectively.

1 class Counter {

3 int n;

4 // Synthetic member

5 // generated by Deuce

6 static long n__ADDRESS__ = ...;

8 public int next (){

9 int current = n;

10 current ++;

11 n = current ;

12 return current ;

13 }

14 public int next(Context c){

15 ContextDelegator . beforeReadAccess (this , n__ADDRESS__ , c);

16 int v = ContextDelegator . onReadAccess (this , n, n__ADDRESS__ , c);

17 v++;

18 ContextDelegator . onWriteAccess (this , v, n__ADDRESS__ , c);

19 return v;

20 }

22 } // End of the class Counter

Listing 5.1: Resulting class Counter after the instrumentation by the Deuce
engine.

In Listing 5.1 we show an example of the resulting class after the instrumentation of
an hypothetical class Counter by the Deuce engine. For the method next, Deuce gen-
erated a new transactional version of this method that receives an additional Context

parameter. Then, every memory access from inside this method, such as reading or
writing to the field n, is replaced by the invocation of the corresponding STM barrier.
Moreover, all calls to the Counter.next() method made within other transactional
methods will be replaced with calls to this new transactional method next(Context).

The invocation chain of transactional methods begins with a call to an atomic
method (marked with @Atomic). In this case, the atomic method does not need an
uninstrumented version and the body of the original method is replaced by a loop that
tries to execute the transactional version of the atomic method within a transaction.

58

5.2. RUNTIME CAPTURE ANALYSIS

5.2 Runtime Capture Analysis

My proposal is based on the work of Dragojevic et al. [Dragojevic et al. , 2009], origi-
nally proposed for the Intel C++ STM compiler, which I adapted to the Deuce STM.

In Algorithm 1, I show the pseudo code for a read and a write barrier in Deuce STM
when using runtime capture analysis. In both cases, the barrier first checks whether
the object being accessed is captured by the current transaction. If so, it accesses data
directly from memory; otherwise, it executes the standard full barrier. As in Deuce
STM, object fields are updated in place using the sun.misc.Unsafe pseudo-standard
internal library.

Algorithm 1 Read and write barriers when using runtime capture analysis.
. in the following, ref is an object, addr is the address of the field accessed

on ref , val is the value read/written, and ctx is the transaction’s context

1: function onReadAccess(ref, val, addr, ctx)
2: if isCaptured(ref, ctx) then
3: return val . returns the field’s value if the object ref is captured by ctx

4: else
5: return ctx.onReadAccess(ref, val, addr) . Uses the full STM barrier
6: end if
7: end function

8: function onWriteAccess(ref, val, addr, ctx)
9: if isCaptured(ref, ctx) then

10: Unsafe.putInt(ref, addr, val) . Updates the field in-place.
11: else
12: ctx.onWriteAccess(ref, val, addr) . Uses the full STM barrier
13: end if
14: end function

The performance of this solution depends on the overhead of the capture analysis,
which is made by the isCaptured function. So, if the potential savings from barrier
elision outweighs the cost of runtime capture analysis, then the average cost of a barrier
in an application will be reduced and the overall performance will be improved.

In the Dragojevic et al’s original proposal the capture analysis algorithm was inter-
twined with the memory management process. The key idea of their algorithm was

59

CHAPTER 5. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

to compare the address of the accessed object, ref, with the ranges of memory loca-
tions allocated by the transaction. To perform this analysis, all transactions must keep
a transaction-local allocation log for all allocated memory.

So, the performance of the isCaptured function depends on the performance of
the search algorithm that needs to lookup the allocation log for a specific address, which
ultimately depends on the efficiency of the data structure used to implement the allo-
cation log. In their work, they implemented and tested three different data structures:
a search tree, an array, and a filter of memory ranges. The search tree allows insertions
and removals of memory ranges and search operations to determine if an address be-
longs to a memory range stored in the tree. The array implementation of the log simply
keeps all memory ranges allocated inside a transaction as an unsorted array. Finally, the
filtering approach uses a hash table as a filter: When a block of memory gets allocated,
all memory locations belonging to the block are hashed and the corresponding hash ta-
ble entries are marked with the exact addresses of the corresponding memory locations;
thus, this filtering scheme allows false negatives.

Dragojevic et al’s evaluate the performance improvement of the capture analysis
technique by measuring the execution time of all benchmarks synchronized with an
unoptimized STM and comparing to the results of the same benchmark and STM with
the capture analysis support. Their experimental results show similar performance
improvements for the three data structures,1 peaking at 18% for 16 threads and the
Vacation benchmark in a low-contention configuration.

On a managed runtime environment with automatic memory management we do
not have readily access to the memory allocation process, so that we can log which
memory blocks are allocated by a transaction and, therefore, we cannot implement the
capture analysis algorithm based on the search tree or the array data structures. Thus,
I adapted the hash table filtering algorithm, replacing it with an IdentityHashMap of
the JDK and I logged the references of the objects instantiated by a transaction. In
my case, and contrary to the original approach, this implementation does not allow
false negatives, which increases the reliability of the capture analysis, but incurs in
further overhead to maintain the transaction-local allocation log. Nevertheless, using
my implementation with the TL2 STM, I get a performance improvement similar to
what was shown in [Dragojevic et al. , 2009]: For a low-contention configuration of
the Vacation benchmark, we achieve a performance improvement of 34% at 16 threads
(see Figure 5.2 on page 64).

1With the hash table performing slightly worse, 5% in the worst case, than the alternatives.

60

5.3. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

5.3 Lightweight Identification of Captured Memory

Although the implementation of the Dragojevic et al’s filtering technique improves
the overall performance of Deuce STM, the isCaptured algorithm is still much more
expensive than a simple memory access: We have to calculate the System.identity-

HashCode() for the accessed object and then we have to lookup a hash table for that
object.

In fact, even with this runtime capture analysis, Deuce STM still does not per-
form well in some of the most challenging benchmarks, such as the Vacation or the
STMBench7, where transactions are more coarse-grained and, therefore, encompass
more memory accesses. I claim that is, in part, due to the relative high cost of the
isCaptured function, and that, if we can lower that cost, we may solve the problem.

In my work, I propose to make the runtime capture analysis algorithm faster by
using the following approach: We label objects with unique identifiers of their creating
transaction, and then check if the accessing transaction corresponds to that label, in
which case we avoid the barriers. For this purpose, every transaction keeps a fingerprint
that it uses to mark newly allocated objects, representing the objects’ owner transaction.
Thus, the isCaptured algorithm just needs to check if the owner of the accessed object
corresponds to the transaction’s fingerprint of the executing Context. In this case, it
performs an identity comparison between the fingerprint of the accessing transaction
and the owner of the accessed object, as shown in Algorithm 2.

Algorithm 2 The LICM algorithm of the isCaptured function.

1: function isCaptured(ref, ctx)
2: return ref.owner = ctx.fingerprint

3: end function

Every time a new top-level transaction begins, its context gets a new unique fin-
gerprint. So, when a new object is published by the successful commit of its allo-
cating transaction, any previously running or newly created transactions calling the
isCaptured method for that object will return false, because their fingerprint can-
not be the same as the fingerprint recorded on that object. At the end of the top-level
transaction, we do not need to clear the context’s fingerprint because a new fingerprint
will be produced on the initialization of the next top-level transaction.

In Figure 5.1 I show an example of the fingerprints creation process and how it
directly determines the result of the capture analysis. The STM barriers shown in Al-
gorithm 1 are performed by the Delegator, which in turn redirects that invocation to

61

CHAPTER 5. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

the Context object whenever the accessed object is not captured by the transaction—
i.e. is not transaction local. In this example I show three different transactions sharing
a Counter object that is instantiated by one of those transactions—transaction number
1. The bar bellow each thread has a number representing the id of each transaction. In
this example, thread A performs transactions 1 and 3, while thread B performs transac-
tion 2. In this case just transactions 2 and 3 perform full barriers, whereas transaction
1 returns and updates the Counter object in place—note that only transactions 2 and
3 reach the Context object when invoking the read and write barriers. Moreover, the
context object of thread A has the same fingerprint of the Counter object only during
the execution of transaction 1, avoiding in this case a full barrier. After the completion
of transaction 1, no other transaction will have the same fingerprint of the Counter ob-
ject and all subsequent transactional accesses to this object must perform a full barrier,
as happens for transactions 2 and 3.

:Context

trxFingerprint:

onReadAccess()

Thread A

init()

new

new

next()

1

onReadAccess()

onWritedAccess()

Delegator

init()

Unsafe.putInt()

commit()
commit()

init()
new

init()
3

3

next()

onReadAccess()

onReadAccess()

Delegator:Context

:trxFingerprint
Thread B

2
init()

new

next()

2

init()

:Counter

:owner

n: ...

onReadAccess()

onWriteAccess()

onWriteAccess()

:...

trx3

:...

trx1

1

:...

trx2

Figure 5.1: Three different transactions accessing a shared object Counter that
is instantiated by transaction 1, which is the only one that avoids the execution
of the full barriers when accessing that object. To clarify the diagrams I put two
boxes representing the same class Delegator (although there is only one).

The generation of new fingerprints is a delicate process that must be carefully de-
signed to avoid adding unintended overhead to either the Deuce STM engine or the
underlying STM. A naive approach to identify each transaction uniquely is to use a

62

5.3. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

global counter, but this approach adds unwanted synchronization among threads that I
would like to avoid. So, the main challenge of LICM implementation is to find an effi-
cient process of generating fingerprints that avoids: (1) further synchronization, (2) the
counter rollover and (3) minimize the additional memory overhead per transactional
object. Considering these goals, I analysed three different solutions:

1. global quiescent counter—A simple scheme increments the counter on every
transaction initialization, which would not scale. But there is no need to do
that and instead, each thread could access the counter and increment it by a large
number (e.g. hundreds of thousands if needed) to acquire a number of transaction
identifiers, and then use these identifiers for newly transactions until it runs out
of identifiers, at which point it would increment the counter by a large number
again. In this case we should use a 64-bit counter because it is unlikely to overflow.

2. combining a thread identifier with a per-thread sequence number—This op-
tion avoids synchronization, but it requires some mechanism to deal with the
wraparound of the numbers. So, again we should use a 64-bit counter.

3. newly allocated instance of class Object as a fingerprint—This solution avoids
rollover and aliasing issues associated with counters. It has the advantage of re-
lying on the garbage collector subsystem to provide uniqueness and the ability
of recycling unused fingerprints. However, it imposes an additional memory
management burden, because it instantiates an additional object per transaction.
Note that in the scope of Deuce STM we cannot use the own transaction object
(represented by an instance of the class Context) as the fingerprint because these
instances are reused by different transactions.

The three solutions require an additional 64-bit metadata field per object to store
the fingerprint (regarding the space of a memory address in a 64-bit architecture). So,
I chose the third option, because it is the simplest to implement and solves both prob-
lems of avoiding synchronization and the counter rollover. Furthermore, I do not
expect to see significant differences between the alternatives, given that the fingerprint
is created when the transaction starts and corresponds to a very small cost of the entire
transaction. According to the results presented in Figure 5.2 on the following page, the
TL2 enhanced with the LICM technique (tl2-licm) outperforms the filtering approach
(tl2-filter) and can improve the performance of the baseline STM by 60% at the peak of
performance with 32 threads—more than three times of the performance improvement
achieved with filtering—for a low-contention configuration of the Vacation benchmark.

63

CHAPTER 5. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

-20%

0%

20%

40%

60%

80%

100%

1 8 32

tl2-filter

tl2-licm

-20%

0%

20%

40%

60%

80%

100%

1 2 4 8 16 24 32 40 48P
e

rf
o

rm
a

n
ce

 I
m

p
ro

v
e

m
e

n
t

Threads

Vacation High

-20%

0%

20%

40%

60%

80%

100%

1 2 4 8 16 24 32 40 48P
e

rf
o

rm
a

n
ce

 I
m

p
ro

v
e

m
e

n
t

Threads

Vacation Low

Figure 5.2: Performance improvement from capture analysis filtering technique
(tl2-filter) and LICM technique (tl2-licm) in the Vacation benchmark, when using
the TL2 STM.

tl2

tl2-filter

tl2-licm

0

5

10

15

1 2 4 8 16 24 32 40 48

(x
1

0
3
)

o
p

s/
se

c

Threads

Vacation high

0

5

10

15

1 2 4 8 16 24 32 40 48

(x
1

0
3
)

o
p

s/
se

c

Threads

Vacation low

Figure 5.3: The throughput for two workloads (low-contention and high-
contention) of the Vacation benchmark, when using the TL2 STM. I show results
for the baseline STM (tl2), for the STM enhanced with the filtering implementa-
tion (tl2-filter), and for my LICM approach (tl2-licm).

In the results presented in Figure 5.3, we can observe that both optimization tech-
niques: filtering and LICM, present a similar behavior and scalability; however, LICM
performs always better than the filtering.

I also compared the performance between the LICM algorithm and the filtering
approach in other two benchmarks: the STMBench7 and the JWormBench, for the
TL2 STM. In Section 5.5 on page 71, I present a complete analysis of these benchmarks,
where I discuss the effects of the LICM over three different STMs: TL2, LSA and
JVSTM. For now, I just want to show that LICM is the most effective approach and the
TL2 STM enhanced with LICM outperforms the filtering solution in different kinds of
applications.

For the STMBench7, we can observe in the results of Figure 5.4 on the next page
that we get a speedup between 2 and 14 times for tl2-licm, whereas tl2-filter get a speedup
between 1.5 and 8 times—almost half of the best speedup achieved with LICM. Just for

64

5.4. EXTENDING DEUCE STM

0,0
0,5
1,0
1,5
2,0
2,5
3,0

1 2 4 8 16 24 32 40 48

tl2-filter tl2-licm

0

2

4

6

8

10

12

14

16

1 2 4 8 16 24 32 40 48

S
p
e
e
d
u
p

Threads

Read-dominated

0

1

2

3

4

5

6

7

8

1 2 4 8 16 24 32 40 48

S
p
e
e
d
u
p

Threads

Read-write

0,0

0,5

1,0

1,5

2,0

2,5

3,0

1 2 4 8 16 24 32 40 48

S
p
e
e
d
u
p

Threads

Write-dominated

Figure 5.4: Speedup from capture analysis filtering technique (tl2-filter) and
LICM technique (tl2-licm) in three workloads (read-dominated, read-write and
write-dominated) of the STMBench7 benchmark, when using the TL2 STM.

the write-dominated workload we verify no difference between both approaches. In
this case the workload is dominated by read-write transactions and the average length
of the transaction local log is lower than in the other two cases—note that most of the
transaction local objects are auxiliary objects to the iterators, which are less used by
read-write operations. So, the lookup in the hash table is quite efficient because it is too
small. Thus, there is no big difference between the two approaches: the LCIM and the
filtering, in the write-dominated workload of the STMBench7

For the JWormBench, we observe in the results of Figure 5.6 that tl2-licm performs
between 2 and 4 times faster than tl2-filter. Moreover, in the results of Figure 5.7 we
observe that tl2-licm scales for an increasing number of threads in the N-reads-1-write
workload, whereas tl2-filter just scales for a maximum of 16 threads. So, for three
different benchmarks, we could confirm that LICM outperforms the filtering approach.

5.4 Extending Deuce STM

An object model of a managed runtime environment specifies a set of rules that dictates
how to represent objects in memory. The LICM technique requires a specific object
model distinct from the one provided by the managed environment, which allows to

65

CHAPTER 5. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

tl2 tl2-filter tl2-licm

0,0

1,0

2,0

3,0

4,0

5,0

1 2 4 8 16 24 32 40 48

(x
1

0
3
)

o
p

s/
se

c

Threads

Read-dominated

0,0

0,5

1,0

1,5

2,0

2,5

3,0

1 2 4 8 16 24 32 40 48

(x
1

0
3
)

o
p

s/
se

c

Threads

Read-write

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1 2 4 8 16 24 32 40 48

(x
1

0
3
)

o
p

s/
se

c

Threads

Write-dominated

Figure 5.5: The throughput for three workloads (read-dominated, read-write and
write-dominated) of the STMBench7 benchmark, when using the TL2 STM, with
two different capture analysis techniques: LICM (tl2-licm) and filtering (tl2-filter)

identify the allocating transaction of an object. Moreover, it also needs to perform ad-
ditional tasks beyond the standard behaviour provided by the STM barriers. Yet, the
original Deuce STM just provides extensibility in terms of the specification of the STM
algorithm, but it does not allow either the definition of additional behavior orthogonal
to all STMs, or any enhancement to the Java object layout. So, I extended Deuce STM
to support the previous requirements and I followed three major guidelines:2 (1) to
avoid changing the current Deuce STM API; (2) to guarantee backwards compatibility
with existing applications and STMs for Deuce; and (3) to provide the ability to en-
hance any existing STM with the capture analysis technique without requiring either
its recompilation or any modification to its source-code.

Extending Deuce STM with the capture analysis technique requires two main chan-
ges to the Deuce STM core structures: (1) the Context implementation of any STM
must keep a fingerprint representing the identity of the transaction in execution and
must perform the capture analysis shown in Algorithm 1; and (2) a transactional class
(i.e., a class whose instances are accessed in a transactional scope) must have an addi-
tional field, owner, to store the fingerprint of the transaction that instantiates it.

2This adaptation of Deuce is available at https://github.com/inesc-id-esw/deucestm/

66

5.4. EXTENDING DEUCE STM

0

5

10

15

1 4 16 32 48

tl2-filter

tl2-licm

0

2

4

6

8

10

12

14

1 2 4 8 16 24 32 40 48

S
p
e
e
d
u
p

Threads

50% RO trxs, O(n2), N Reads, 1 Writes

0

1

2

3

4

5

6

7

8

9

10

S
p
e
e
d
u
p

Threads

50% RO trxs, O(n2), N Reads, N Writes

Figure 5.6: Speedup from capture analysis filtering technique (tl2-filter) and
LICM technique (tl2-licm) for two workloads (N-reads-1-write with smaller write-
sets and N-reads-N-writes with larger write-sets) of the JWormBench benchmark.

0
200
400
600

1 4 16 32 48

tl2

tl2-filter

tl2-licm

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 24 32 40 48

(x
1

0
3
)

o
p

s/
se

c

Threads

50% RO trxs, O(n2), N Reads, 1 Writes

0

50

100

150

200

250

300

350

400

1 2 4 8 16 24 32 40 48

(x
1

0
3
)

o
p

s/
se

c

Threads

50% RO trxs, O(n2), N Reads, N Writes

Figure 5.7: The throughput for two workloads (N-reads-1-write with smaller
write-sets and N-reads-N-writes with larger write-sets) of the JWormBench bench-
mark, when using the TL2 STM, with two different capture analysis techniques:
LICM (tl2-licm) and filtering (tl2-filter)

In this section I describe how I introduced the filtering mechanism in Deuce STM
to perform additional tasks, such as the capture analysis, without changing the current
Deuce API. After that, I address the new infrastructure of enhancement transforma-
tions that allows the addition of STM metadata in-place within the transactional ob-
jects.

5.4.1 Filtering

Keeping the established guidelines in mind, I added the filtering support through the
specification of a filter context—that is, a class that implements the Context interface
and adds some functionality to any existing STM specified by another Context (using
the decorator design pattern [Gamma et al. , 1995]). The new class ContextFilter-

CapturedState uses this approach, so that it can be applied to an existing Context of
any STM.

67

CHAPTER 5. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

The filter is provided to the Deuce STM through the system property org.deu-

ce.filter, following the same parametrization approach used to identify an STM.

According to the implementation of the LICM approach, a Context object must
keep the fingerprint of its running transaction. To that end, we need to initialize and
store a new fingerprint in the Context object of the executing thread, whenever it is
notified of the beginning of a new transaction. Besides that, given that Deuce uses flat
nesting, meaning that there is no concurrency among nested transactions within a nest-
ing tree, the fingerprint of a top-level transaction can be shared across its nested trans-
actions. In Listing 5.2 I show the code of the class ContextFilterCapturedState—a
Context implementation that controls the initialization of new fingerprints (for sim-
plification I omit the method rollback that performs a similar code to the method
commit).

1 public class ContextFilterCapturedState implements Context {

2 protected final Context ctx;

3 protected Object trxFingerprint = null;

4 protected int nestedLevel = 0;

6 public ContextFilterCapturedState (Context ctx) {

7 this.ctx = ctx;

8 }

9 @Override

10 public void init(int atomicBlockId , String metainf) {

11 nestedLevel ++;

12 if (nestedLevel == 1) trxFingerprint = new Object ();

13 ctx.init(atomicBlockId , metainf);

14 }

15 @Override

16 public boolean commit (){

17 nestedLevel --;

18 return ctx. commit ();

19 }

20 ...

21 }

Listing 5.2: The ContextFilterCapturedState class is a context decorator
that adds a transaction fingerprint to any existing STM Context implementation.

To perform the runtime capture analysis, all the STM barriers must check whether
the object being accessed is captured by the current transaction (i.e. the object is trans-
action local). This verifications is performed by the function in Listing 5.3 that must
be invoked by all STM barriers.

68

5.4. EXTENDING DEUCE STM

1 public boolean isCaptured (Object ref , Context ctx){

2 return (((CapturedState)ref). owner ==

3 ((ContextFilterCapturedState)ctx). trxFingerprint);

4 }

Listing 5.3: The LICM algorithm performed by the isCaptured function.

According to Deuce STM architecture, for each primitive type there are two STM
barriers defined in the class ContextDelegator: one to access a field from an object
and another to access an element from an array. For example, for the int type there is
an STM barrier to access an int field from an object and another STM barrier to access
an element from an int array, as shown in the code of Listing 5.4. Then both STM
barriers redirect the invocation to the same event handler in the Context implemen-
tation. Note in the code of Listing 5.4 that both barriers call the same handler of the
Context interface, which has the following signature: onReadAccess(Object ref,

int val, long addr).

1 public class ContextDelegator {

2 static int onReadAccess (Object ref , int val , long addr ,

3 Context ctx)

4 {

5 return ctx. onReadAccess (ref , val , addr);

6 }

7 static int onArrayReadAccess (int [] arr , int index , Context ctx){

8 int address = INT_ARR_BASE + INT_ARR_SCALE *index;

9 ctx. beforeReadAccess (arr , address);

10 return ctx. onReadAccess (arr , arr[index], address);

11 }

12 ...

13 }

Listing 5.4: Default implementation of an STM barrier for the int primitive
type in regular objects and arrays.

Yet, when we replace the root of the transactional classes hierarchy from Object

to CapturedState then the STM barriers for arrays are no longer compatible with
the new arrays’ definition. Note, however, that the same problem does not happen for
regular objects because CapturedState is still compatible with Object.

For this reason we need to replace the default implementation of the ContextDe-

legator by a new delegator with new STM barriers for the new array types that are
wrapped in a CapturedState object. So, although I could include the isCaptured

69

CHAPTER 5. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

check in all event handlers of the ContextFilterCapturedState, I put this verifica-
tion in the STM barriers defined in the new delegator.

Deuce instrumentation engine refers to the delegator class by its internal name that
is stored in a global constant: CONTEXT_DELEGATOR_INTERNAL. So, if we replace this
constant with the name of the class that implements the new delegator, then all in-
strumented memory accesses are redirected to the STM barriers defined in this new
class. To that end, I added a new parameter to Deuce runtime, which is responsible for
specifying the name of the class that will replace the default ContextDelegator.

I defined the new class ContextDelegatorCapturedState whose methods per-
form the capture analysis check, as shown in the code of Listing 5.5. For simplification
I have omitted the code of the write barrier that performs a similar verification of the
read barrier.

1 public class ContextDelegatorCapturedState extends ContextDelegator

2 {

3 static int onReadAccess (Object ref , int val , long addr ,

4 Context ctx)

5 {

6 if (isCaptured (ref , ctx)) return val;

7 else return ctx. onReadAccess (ref , val , addr);

8 }

9 static int onArrayReadAccess (CapturedStateIntArray ref , int idx ,

10 Context ctx)

11 {

12 if (isCaptured (ref , ctx))

13 return ref. elements [idx];

14 else

15 return ContextDelegator .

16 onArrayReadAccess (ref.elements , idx , ctx);

17 }

18 ...

19 }

Listing 5.5: The code skeleton of two read barriers for both objects and arrays,
using runtime capture analysis.

5.4.2 Storing metadata in-place

To store additional metadata in-place with the transactional object we need to provide
an additional transformation in the Deuce STM that includes the extra required fields

70

5.5. VALIDATION

for all transactional objects. The solution I used to achieve this goal was to replace the
root of the transactional classes hierarchy from Object to the desired metadata class:
i.e. the CapturedState class shown in the code of Listing 5.6. This transformation is
instrumented by Deuce through a specific enhancer processed by the new infrastructure
of enhancements transformations that I added to Deuce STM engine (for more infor-
mation about this new infrastructure and its design, see Appendix C).

1 public class CapturedState {

2 private final Object owner;

3 public CapturedState () {

4 this.owner = null;

5 }

6 public CapturedState (Context ctx) {

7 this.owner = ((ContextFilterCapturedState) ctx). trxFingerprint ;

8 }

9 }

Listing 5.6: CapturedState class adds an extra field owner to all transactional
classes.

Depending on whether a transactional class is instantiated outside or inside a trans-
actional scope, the constructor invoked will be either the parameterless constructor or
the constructor with a Context parameter, respectively. If an object is instantiated out
of a transactional scope then its owner field will be null. Otherwise, it will point to the
fingerprint of the executing Context (I assume that whenever the class CapturedState

is used, all contexts will be instances of the class ContextFilterCapturedState).

5.5 Validation

Even though the main goal of the LICM technique is to improve the STM performance,
it also has a beneficial effect on the size of the application footprint. Although LICM
adds an overhead of an allocated fingerprint per transaction and a single word per ob-
ject, which increases the size of the live objects, it also contributes to the reduction of
the size of an application footprint due to the elimination of unnecessary metadata for
transaction local objects.

In this section, first I show a performance evaluation of the LICM for a diversity of
benchmarks and then, I also show the results of an application’s memory consumption.

71

CHAPTER 5. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

All the tests were performed on a machine with 4 AMD Opteron(tm) 6168 proces-
sors, each one with 12 cores, resulting in a total of 48 cores. The JVM version used was
the 1.6.0_33-b03, running on Ubuntu with Linux kernel version 2.6.32.

5.5.1 Performance evaluation

To evaluate the performance of my approach, I used the STMBench7, the STAMP, and
the JWormBench benchmarks, with the LSA [Riegel et al. , 2006], the TL2 [Dice et al.
, 2006], and the JVSTM [Fernandes & Cachopo, 2011] STMs, all implemented in the
Deuce STM framework. In all tests I show the results for both the baseline STM and
for the STM with LICM support (identified by the suffix -licm).

Moreover, given that the STMBench7 and the JWormBench benchmarks also have a
medium/fine-grained locking synchronization strategy, I also compare the performance
of the lock-based approach with the STM-based approach, showing that for certain
STMs, using LICM makes the performance of the STM-based approach close to (or
better than) the performance of the lock-based approach. In particular, for the STM-
Bench7 and a low number of threads, JVSTM outperforms the medium-lock approach.

STAMP benchmarks

STAMP is a benchmark suite that attempts to represent real-world workloads in eight
different applications. I tested four STAMP benchmarks: K-Means, Ssca2, Intruder,
and Vacation.3 I ran these benchmarks with the configurations proposed in [Cao Minh
et al. , 2008] and presented in Table 5.1.

Benchmark Parameters
Vacation Low-contention -n 256 -q 90 -u 98 -r 262144 -t 65536

Vacation High-contention -n 256 -q 90 -u 60 -r 262144 -t 65536

Intruder -a 10 -l 128 -n 65536 -s 1

KMeans -m 15 -n 15 -t 0.00001 -i random-n65536-d32-c16.txt

Ssca2 -s 13 -i 1.0 -u 1.0 -l 13 -p 3

Table 5.1: Configuration parameters used for each STAMP benchmark.

Table 5.2 shows the speedup of each STM with LICM support for 1 thread and
for N threads, where N is the number of threads that reach the peak of performance.

3The original implementation of STAMP is available as a C library and these four benchmarks are
the only ones available for Java in the public repository of Deuce that are running with correct results.

72

5.5. VALIDATION

1 thread
Vacation

Low-contention
Vacation

High-contention Intruder KMeans Ssca2
LSA 1.2 1.2 1.4 0.9 1.0
TL2 1.1 1.1 1.2 0.9 0.9

JVSTM 1.1 1.1 1.2 1.0 1.0

N threads

LSA
7.0

(40/8)
6.0

(40/12)
1.7

(16/8)
1.0

(32/32)
0.9

(8/8)

TL2
1.6

(32/32)
1.6

(32/40)
1.3

(16/16)
1.0

(12/24)
1.0

(8/8)

JVSTM
1.1

(8/8)
1.0

(40/40)
1.1

(8/8)
1.0

(4/4)
1.0

(32/32)

Table 5.2: The speedup of each STM with LICM support for 1 thread and N

threads. In the latter case I also show, between parentheses, the number of threads
that reach the peak of performance, with and without the LICM support, respec-
tively. I emphasise in bold the speedup values that are higher than 1.0.

Note that a speedup higher than 1 means that the performance improved with LICM,
whereas a speedup lower than 1 means that performance decreased with LICM. The
results in Table 5.2 show that LICM improves the performance of the baseline STMs
for the majority of the evaluated benchmarks and that, when it has no benefits (due to
the lack of opportunities for elision of barriers), the imposed overhead is very low.

The speedup we observed in Intruder and Vacation is consistent with the results
of [Dragojevic et al. , 2009], which provides evidence for some opportunities of elision
of transaction-local barriers. From my analysis, Intruder instantiates an auxiliary linked
list and a byte[], whose barriers can be elided with my capture analysis technique.
On the other hand, Vacation performs three different kinds of operations, each one
including an initialization phase and an execution phase. In the initialization phase
it instantiates several arrays with the arguments that should be parametrized in the
operations performed by each transaction. These auxiliary arrays are transaction local
and their access barriers can be suppressed through capture analysis.

LSA shows better speedup than TL2 and JVSTM, due to scalability problems veri-
fied in the LSA when executed without the LICM—in this case we registered a high rate
of aborts due to the eager ownership acquisition approach followed by LSA. For the
JVSTM we do not observe the same improvement in performance because, although
LICM helps to elide useless barriers for transaction local objects, they still incur in
additional metadata that penalizes the corresponding memory accesses (in the case of
the TL2 and the LSA, there is no in-place metadata associated with the transactional
objects).

73

CHAPTER 5. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

According to [Dragojevic et al. , 2009], neither K-Means nor Ssca2 access transaction
local memory and, thus, in these cases there are no opportunities for eliding barriers
with capture analysis. My results are consistent with this, but still show that my tech-
nique for capture analysis has almost no overhead in performance and that it degrades
performance in 10%, in the worst case.

STMBench7 benchmark

Several of the STMBench7’s operations traverse a complex graph of objects by using
iterators over the collections that represent the connections in that graph. Typically,
these iterators are transaction local and, thus, accessing them using STM barriers adds
unnecessary overhead to the STMBench7’s operations.

LSA and JVSTM perform better than TL2 on STMBench7, because of their version-
ing approach, which allows read-only transactions to get a valid snapshot of memory
and thus, they always commit successfully. This effect is amplified by the fact that
only with LICM can we have read-only transactions. Without LICM, most of the read-
only transactions are forced to be executed as read-write transactions because they need
to use write barriers when using iterators, which perform modifications to their own
state. This problem is aggravated by the eager ownership acquisition approach followed
by LSA, which acquires a lock for every written location. All this together contributes
to a very high rate of aborts that drastically reduces the performance of the LSA for
more than 4 threads. Once the useless barriers are elided with capture analysis, the LSA
scales for an increasing number of threads, getting an improvement of up to 12-fold in
performance as depicted in the results of Figure 5.8.

In the results of Figure 5.8 I omitted TL2, which is the STM with the worst perfor-
mance. Even though LSA-licm performs better, its results are still far from the results
obtained with JVSTM-licm, which is the most performant STM in the STMBench7. In
fact, JVSTM-licm gets better results than the medium-lock synchronization approach
for a number of threads lower than 24. In this case, JVSTM benefits from its lock-free
commit algorithm and from the lazy ownership acquisition approach, in contrast to
the eager approach of the LSA.

JWormBench benchmark

In previous chapter I used the JWormBench benchmark to explore the effects on perfor-
mance of relaxing the transparency of an STM. To that end, I extended the Deuce API

74

5.5. VALIDATION

02
46
810121416

jvstm jvstm-licm medium-lock coarse-lock lsa lsa-licm

0

2

4

6

8

10

12

14

16

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
 (

x
1

0
3
)

o
p

s/
se

c

Threads

Read-dominated No-long-traversals

0

1

1

2

2

3

3

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

Write-dominated No-long-traversals

0

1

2

3

4

5

6

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

Read-write no-long-traversals

Figure 5.8: The STMBench7 throughput for LSA and JVSTM, in the three avail-
able workloads, without long traversal operations. For readability reasons I omit-
ted TL2, which is the worst of the STMs.

with a couple of annotations that allow programmers to specify that certain objects
or arrays should not be transactified. Using this approach, we got an improvement of
up to 22-fold in the performance. Now, with my new LICM technique, I got similar
results but without having to change the original Deuce API.

I ran these benchmarks with the same configuration used in Section 4.4 on page 50:
a world with 1024 nodes and 48 worms with a head’s size varying between 2 and 16
nodes, corresponding to between 4 and 256 read/write transactional accesses.

There are two major sources of unnecessary STM barriers in the JWormBench: (1)
a global immutable matrix containing the world nodes (which cannot be expressed as
immutable in Java), and (2) the auxiliary arrays to the worm operations. The first
barriers can be suppressed by excluding the class World from the instrumentation of
Deuce. On the other hand, the second barriers will be automatically elided through
my LICM technique.

Figure 5.9 shows the results obtained for the JWormBench benchmark. TL2 and
LSA present the same performance in both workloads of the JWormBench and, so,

75

CHAPTER 5. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

I show the results for LSA only. Unlike what happened for the STMBench7, LSA
with capture analysis is always better than JVSTM in the JWormBench, because these
workloads have transactions with a smaller average length and with a lower level of
contention. But, most importantly, we can see that both STMs get results close to the
results obtained with the fine-grained locking approach, whereas without LICM they
were an order of magnitude slower. This is true for the first workload, but when the
number of write operations increases too much, as in the case of the O(n2), NReads,-
NWrites workload, the performance of JVSTM degrades for a higher number of
threads, due to the big overhead of its read-write transactions.

The major overhead of the JWormBench comes from the mathematical operations
performed by each worm. When these operations perform useless STM barriers they
add a significant overhead to the transactions. In fact, and according to the observa-
tions presented in Section 4.2 on page 45, both workloads spend almost 50% of the
execution time accessing transactional local arrays through unnecessary STM barriers.
Furthermore, this situation increases too much the average length of the transactions
and, therefore, increases the rate of aborted transactions. In those circumstances all
STMs incur in huge overheads and substantially decrease the overall throughput.

1

10

100

1.000

1

jvstm

jvstm-licm

fine-lock

coarse-lock

lsa

lsa-licm

1

10

100

1.000

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(×

1
0

3
)

o
p

s/
s

Threads

50% RO trxs, O(n2), N Reads, 1 Writes

1

10

100

1.000

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(×

1
0

3
)

o
p

s/
s

Threads

50% RO trxs, O(n2), N Reads, N Writes

Figure 5.9: The JWormBench throughput for LSA, JVSTM, and locks, for two
different wokloads. Note that the vertical axis use a logarithmic scale.

5.5.2 Memory Consumption Evaluation

In terms of memory consumption the LICM has small impact in the behavior of the
JVSTM because this STM requires a specific object model, which stores the STM meta-
data in place within the memory locations. So, even non-shared objects require addi-
tional STM metadata to store their values.

So, I chose a non-multi-versioning STM to evaluate the effects of LICM on the ap-
plication’s memory consumption. To that end, I chose the TL2, instead of the LSA, be-
cause the latter has shown a performance bottleneck when performed without LICM.

76

5.5. VALIDATION

I used the STMBench7 and the Vacation in my experimental analysis, because those
benchmarks use large data sets and, therefore, I expect that it better shows impact of the
LICM in the memory heap size. In both cases, I just analyze the results of one workload
because the behavior of memory consumption resulting from the LICM action is the
same for all workloads of the same benchmark.

I ran my tests with just one worker thread for approximately thirty minutes and I
collected the results from the verbose garbage collector (GC) output with the default
configuration. In this case, and for a server-class machine such as the one used in my
tests, the JVM selects the parallel collector by default, which uses an adaptive heap size
policy to dynamically adjust the size of the heap. Thus, the behaviour of the GC is
based on the values of the following parameters: (1) a maximum garbage collection
pause time (by default there is no maximum pause time); (2) a desired throughput for
an application, specified as a ratio of the total program execution time spent in garbage
collection (the default value is 99, resulting in 1% of the time in garbage collection).
So, if the throughput goal is not being met, the size of the heap is increased. Growing
and shrinking the heap is done at different rates. By default a generation grows in
increments of 20% and shrinks in steps of 5%. So, it is normal that we observe the heap
size to grow quickly and to shrink slowly along several collections.

In all results I show the evolution of three parameters during the execution of each
benchmark: (1) the combined size of live objects before GC, (2) the size of live objects
after GC, and (3) the total available space, corresponding to the maximum heap size.

STMBench7 benchmark

In the results of Figure 5.10, we can observe that there is a small overhead in memory
space for the live objects after GC, due to the transaction fingerprint that is kept for all
live objects. Yet, I can confirm my expectations that this overhead is very low and there
is no significant differences between the size of live objects after GC with, or without
LICM.

On the other hand, we can verify a reduction in the total available space of approx-
imately 400 Mb with LICM. Taking advantage of LICM, the transactional local objects
avoid STM barriers and also the additional metadata required by the TL2. Hence, the
size of the transactions’ read-set and write-set are also smaller and contribute to the
reduction of the heap size. Thus, we observe in the results of Figure 5.10 that the
maximum size of live objects before GC is almost 500 Mb lower than without LICM.

77

CHAPTER 5. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

020040060080010001200140016001800200022002400

020040060080010001200140016001800

Before GC After GC Available

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 200 400 600 800 1000 1200 1400 1600 1800

M
b

Seconds

Read Dominated

TL2

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 200 400 600 800 1000 1200 1400 1600 1800

M
b

Seconds

Read Dominated

TL2 LICM

Figure 5.10: The STMBench7 memory consumption for TL2, with and without
LICM, in the read dominated workload, without long traversal operations.

Vacation

In the results of Figure 5.11, we can observe the overhead resulting from the transaction
fingerprint that is added for all transactional objects by LICM. In this case, the LICM
requires almost 100 Mb more for all live objects after GC than without LICM.

02004006008001000120014001600180020002200

0 2004006008001000120014001600

Before GC After GC Available

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600

M
b

Seconds

Vacation Low

TL2

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600

M
b

Seconds

Vacation Low

TL2 LICM

Figure 5.11: The Vacation memory consumption for TL2, with and without
LICM, in the low contention workload.

Nevertheless, and as happens for the STMBench7, the LICM is able to reduce the
Vacation footprint by as much 700 Mb.

78

5.6. SUMMARY

5.6 Summary

STMs are often criticized for introducing unacceptable overhead when compared with
either the sequential version or a lock-based version of any realistic benchmark. My ex-
perience in testing STMs with several realistic benchmarks, however, is that the prob-
lem stems from having instrumentation on memory locations that are not actually
shared among transactions.

Several techniques have been proposed to elide useless STM barriers in programs
automatically instrumented by STM compilers. From my analysis, the main contri-
butions in this field follow three distinct approaches: (1) runtime capture analysis; (2)
compiler static analysis to elide redundant operations; and (3) decomposition of the
STM APIs to allow programmers to convey the knowledge about which blocks of in-
structions or memory locations should not be instrumented. The latter approach is
more efficient and has shown bigger improvements in the performance of the STMs,
but has the inconvenient of reducing the transparency of the STMs APIs. Yet, to the
extent of my knowledge, none of the previous solutions demonstrated performance
improvements with the same magnitude of the results that I present here for the STM-
Bench7 and Vacation benchmarks.

Moreover, even though in this work I did not address the problem of removing
unnecessary barriers for accesses to thread local objects, my approach can be easily
adapted for this case, also: Rather than having a per-transaction fingerprint, we need a
per-thread fingerprint instead.

79

CHAPTER 5. LIGHTWEIGHT IDENTIFICATION OF CAPTURED MEMORY

80

Chapter 6

Adaptive Object Metadata

In Chapter 5, I described a new runtime optimization technique (LICM) that can iden-
tify transaction local objects, corresponding to non-shared memory, and for which
STM barriers can be elided when accessing those objects. My experimental results
show a significant performance improvement in benchmarks with transaction local
data, when we use an STM enhanced with LICM.

Yet, the STM-induced overheads are not only in the unnecessary use of STM bar-
riers for non-shared objects, but also in the overheads of accessing shared objects that
are not under contention—frequently non-contend. In these cases, we cannot avoid a
transactional definition for those classes, because their instances correspond to shared
objects that could be under contention, however, we will have an additional overhead
every time we access those objects and they are non-contended. For instance, in the
JVSTM we incur in the overheads of the additional STM metadata that is added for all
transactional locations.

The multi-versioning approach, which is used by the JVSTM, has the benefit that
read-only transactions never conflict with other transactions, but the drawback of typi-
cally requiring both more memory to store the multiple versions and extra indirections
to access the value of each transactional location.

Yet, I claim that it is possible to substantially reduce the induced overheads of a
multi-versioning STM if we assume that the amount of memory under contention—
that is, memory being concurrently accessed both for read and for write—is only a
small fraction of the total amount of memory accessed by that program.

The key insight that allows eliminating these overheads is that the STM metadata is
needed only when several transactions contend for the same transactional object and at

81

CHAPTER 6. ADAPTIVE OBJECT METADATA

least one of those transactions writes to that object. Thus, assuming that in real-sized
applications the vast majority of objects are seldom written, the number of objects
that need the metadata should be much smaller than the total number of objects in
the application. This, in turn, means that if we use a compact representation for the
non-contended objects, we may have a significant reduction both in the memory used
and in the performance overhead.

My proposal is based on the idea of transactional objects having adaptive object meta-
data (AOM). AOM is an object-based design that follows the JVSTM general design,
but it is adaptive because the metadata used for each transactional object changes over
time, depending on how the object is accessed. In its most compact form the metadata
adds an overhead of a single word per object, but when an object is changed and several
versions of it may be needed, the object is extended with extra metadata to represent
the various versions of the object. This extension is not permanent, however, and the
object may revert back to its most compact form. With this AOM approach I expect
to be able to reduce not only the memory overheads imposed by the STM, but also its
performance overheads.

In the next Section, I give an overview of the key aspects of the JVSTM that are
relevant to understand the AOM. After that, in Section 6.2, I describe in more detail
the new AOM design and its memory model. In Section 6.3, I discuss two different im-
plementation approaches for the AOM. Then, in Section 6.4, I present an experimental
evaluation for a variety of benchmarks. Finally, in Section 6.5, I present my concluding
remarks.

6.1 JVSTM Overview

The JVSTM [Fernandes & Cachopo, 2011] is a Java library that implements a lock-free,
multi-versioning STM. It uses the core concept of versioned boxes (vboxes), which can be
seen as a replacement for transactional memory locations. Instead of keeping only a
single value, a vbox (instance of the VBox class) maintains a sequence of values—the
vbox’s history—where each value is tagged with a version corresponding to the number
of the transaction that has committed that value, as shown in Figure 6.1. Each entry in
the history of a vbox is a vbox body (instance of the VBoxBody class), and the entries
are sorted by their version in descending order.

During a transaction, writes to a vbox are logged into a per-transaction write-set and
do not affect the history of the vbox until commit time. Similarly, reads of vboxes are
logged into a per-transaction read-set, which will be used for validating the transaction.

82

6.1. JVSTM OVERVIEW

Figure 6.1: Structure that represents a transactional object, instance of a class
Point, using one vbox for each of its fields. In this case, both fields were changed
by transactions 17 and 20.

At commit time, read-write transactions are validated1 by checking that all of the
vboxes in their read-set are still up-to-date—that is, that none of the vboxes read by
the transaction have been changed in the meanwhile by another concurrent transaction
that successfully committed. Otherwise, we say that there was a conflict and the trans-
action cannot commit successfully; instead, it needs to restart in the new version of the
program’s state.

If a write transaction is valid, it will try to enqueue into a global queue of trans-
actions that want to commit; these transactions are represented in the queue by in-
stances of the class ActiveTransactionRecord (ATR). By successfully getting into
that queue, a transaction obtains a global order for commit and is guaranteed to com-
mit in that order, possibly with the help of other transactions waiting for their turn to
commit: This results in a lock-free commit algorithm.

During the commit of a (successfully enqueued) transaction, there is the write-back
phase, which is when the new values of the vboxes changed during the transaction are
added to each vbox’s history, as shown in Listing 6.1. As a result of the helping during
the commit, more than one thread may attempt to write-back to the same vbox. Thus,
the commit method of class VBox, which implements the write-back of a vbox, uses
a compare-and-swap (CAS) operation to install the new VBoxBody at the head of the
list of bodies. If the CAS fails, then another thread must have successfully completed
the write-back for this vbox. In either case, the write-back of a vbox returns the vbox
body that was successfully added to the vbox’s history. All these bodies are collected
and stored in the ATR corresponding to the committing transaction, and, later, used to
allow the garbage collection of old history entries.

1In the JVSTM, read-only and write-only transactions do not need to validate as they may always
commit successfully.

83

CHAPTER 6. ADAPTIVE OBJECT METADATA

1 VBoxBody commit (Object newValue , int txNumber) {

2 VBoxBody currHead = this.body;

3 if (currHead == null || currHead . version < txNumber) {

4 VBoxBody newBody = new VBoxBody (newValue , txNumber , currHead);

5 return CASbody (currHead , newBody);

6 } else {

7 return currHead . getBody (txNumber);

8 }

9 }

11 VBoxBody CASbody (VBoxBody expected , VBoxBody newBody) {

12 if (compareAndSwapObject (this , bodyOffset , expected , newBody)) {

13 return newBody ;

14 } else { // if the CAS failed the new body must already be there!

15 return this.body. getBody (newBody . version);

16 }

17 }

Listing 6.1: Algorithm used by the JVSTM to write-back to a vbox. The commit

method receives the new value and the transaction number corresponding to the
version of the new value.

The history of a vbox is needed to ensure that reads will always be able to access a
consistent view of the shared-memory state. At transaction begin, transactions obtain
the number of the latest committed transaction and store that number as their reading
version. This version is used in all reads to ensure that they are consistent: Reading a
vbox traverses the vbox’s history to obtain the value corresponding to the transaction’s
reading version (the value with the largest version smaller or equal to the transaction’s
version). This is one of the key elements that guarantees that the JVSTM satisfies the
opacity correctness property [Guerraoui & Kapalka, 2008].

Thus, old entries in a vbox’s history—that is, all entries except for the most recent
one—may be discarded as soon as there are no active transactions that may need to
access those entries. To discard no-longer accessible versions, the JVSTM implements
its own garbage collection (GC) algorithm.

The JVSTM’s GC runs in its own thread and whenever it finds out that the versions
overridden by a given commit are no longer accessible, it calls the clean method shown
in Listing 6.2.

The clean method of an ATR iterates over all of the bodies that were written back
for the commit of that ATR’s transaction and trims them—that is, it sets the previous

84

6.2. THE ADAPTIVE OBJECT METADATA APPROACH

1 // in class ActiveTransactionRecord :

2 void clean () {

3 for (Pair <VBox , VBoxBody > pair : this. allWrittenVBoxes) {

4 pair.body. previous = null;

5 }

6 }

Listing 6.2: Algorithm to clean the VBoxBody objects committed by that record’s
transaction.

field to null—because the previous entries in the history are no-longer needed. As we
shall see next, my AOM approach piggybacks into this clean method.

6.2 The Adaptive Object Metadata approach

I showed what a transactional object looks like in Figure 6.1. Compare that with a
plain object, which would consist only of the instance of the Point class. It becomes
clear that using the JVSTM adds significant overhead, not only in terms of the extra
memory needed to store all of the metadata, but also in terms of the cost needed to
traverse all of that metadata during accesses to the object. Even when the application
reaches a quiescent state where the GC is able to trim all of the vboxes’ histories, there
is still significant overhead due to the vboxes and their single entry.

The novelty of the AOM approach is that it uses two different layouts for trans-
actional objects—the compact layout and the extended layout—and changes objects back
and forth between these two layouts, so that, most often, objects are in the compact
layout, which does not need metadata.

The extended layout is similar to the original layout used by the JVSTM, except that
AOM uses only one vbox for the entire object, rather than one vbox per field, as shown
before. Moreover, given that there is always one and only one vbox for each object,
AOM coalesces the vbox with the object. So, in my approach, every transactional class
must inherit from VBox, thereby guaranteeing that each transactional object has a field
body that points to its history of values.

The structure shown in Figure 6.2 corresponds to the extended layout of my AOM
approach. In this layout, the values contained in the fields of the Point class are ignored
by the STM, because the values are contained in the history stored in body. Each value

85

CHAPTER 6. ADAPTIVE OBJECT METADATA

of the history corresponds to a snapshot of an instance of Point, created whenever a
transaction commits some changes to that instance. Because in these snapshots the field
body is not used, I omit it in Figure 6.2. I say that an object with the extended layout
is an extended object.

:VBoxBody(

previous:(null(

version:(17(

value:(

:Point(

body:(

x:(0(

y:(0(

:VBoxBody(

previous:(

version:(20(

value:((

:Point(

x:(22(

y:(26(

:Point(

x:(11(

y:(13(

Figure 6.2: An instance of the class Point in the AOM’s extended layout.
Whereas in Figure 6.1 there was a vbox for each field, here there is a single vbox
for the entire object.

The goal, however, is that most objects should use (for most of the time) the com-
pact layout, in which case the field body is null (so, there is no history) and the fields
declared in the class Point contain the object’s current values, as shown in Figure 6.3.
An object with the compact layout is a compact object.

:Point'

body:'null'

x:'22'

y:'26'

Figure 6.3: Point object in the compact layout.

In my approach, transactional objects may be in any of these two layouts and they
may swing back and forth between the two: A compact object is extended whenever it
is changed by a transaction and, therefore, it needs to maintain more than one version
of its fields; an extended object may be reverted (to a compact layout) whenever it has
only a single version in its history.

To support the extension and reversion operations, I added two auxiliary methods
to the class VBox—snapshot() and toCompactLayout(Object)—which are overrid-
den by every class that inherits from VBox. The execution of snapshot() returns a
clone of the object containing the current values of the object’s fields. The method
toCompactLayout(Object) is responsible for copying the fields of a given snapshot
into the transactional object. The implementation for both methods is injected into

86

6.2. THE ADAPTIVE OBJECT METADATA APPROACH

every transactional class instrumented by Deuce through a specific enhancer that is re-
sponsible for this transformation (for more information about the new infrastructure
of enhancement transformations for Deuce and its design, see Appendix C).

With this approach of swinging back and forth between the two layouts, I intend
to reduce both the memory and the performance overheads caused by the STM’s meta-
data, but obviously there is a tradeoff here. Not only because extending and reverting
objects has costs, but also because it may interfere with the rest of the STM operations.

I designed my AOM operations—the extension and the reversion of an object—such
that all of the JVSTM’s operations preserve their progress guarantees. Namely, that
reading a vbox and writing to a vbox are wait-free, and that committing a transaction
is lock-free. Even though I use locks in the reversion of an object, the reversion is
performed during the GC, which runs in separate threads, and, therefore, does not
affect the rest of the transaction’s operations.

In the following three subsections, I describe each of the AOM operations in detail:
reverting, extending and reading. After that, in Subsection 6.2.4, I discuss informally
the correctness of my approach by looking into the various scenarios of concurrent
interleavings of the STM operations over a transactional object.

6.2.1 Reverting Objects

The process of reverting an object is piggybacked into the JVSTM’s GC: When the GC
trims an object’s history and only the most recent version remains, it may revert the
object to the compact layout.

In Listing 6.3 I show both the tryRevert method that implements the reversion of
an object and its call during the GC’s clean method. Figure 6.4 illustrates the process
of reverting an object with a single version.

When the GC algorithm trims the history of an object (line 4), it calls the tryRevert

method (line 5). Given that the JVSTM’s GC may run with multiple threads, the
tryRevert method may be called concurrently for the same object. Thus, it acquires
the object’s monitor (line 10) to prevent that more than one thread tries to revert the
same object concurrently. Once the monitor is acquired, the method checks whether
the head of the object’s history is the VBoxBody that was just trimmed (line 11). If it
is, which means that there is only one version in the history, it copies the values con-
tained in that body to the corresponding fields in the object (line 12) and tries to CAS

87

CHAPTER 6. ADAPTIVE OBJECT METADATA

1 // in class ActiveTransactionRecord :

2 void clean () {

3 for (Pair <VBox , VBoxBody > pair : this. allWrittenVBoxes) {

4 pair.body. previous = null;

5 tryRevert(pair.vbox, pair.body); // new call for AOM
6 }

7 }

9 boolean tryRevert (VBox vbox , VBoxBody body) {

10 synchronized (vbox) {

11 if (vbox.body == body) { // step 1

12 vbox. toCompactLayout (body.value); // step 2

13 compareAndSwapObject (vbox , bodyOffset , body , null);// step 3

14 }

15 }

16 }

Listing 6.3: Algorithm to revert an object as part of the GC’s clean task. I show
in bold the line that was added to the clean method.

:VBoxBody

previous: null

version: 0

value:

:VBoxBody

previous:

version: 20

value:

:Point

body: null

x: 11

y: 13

2

4

3

:Point

x: 22

y: 26

:Point

x: 11

y: 13

:Point

body:

x: 11

y: 13

2

null
3

1

1 snapshot()

:VBoxBody

previous: null

version: 17

value:

:Point

x: 11

y: 13

toCompactLayout()

Figure 6.4: Reverting an object that is in the extended layout and that stores the
values 11 and 13 as the most recent, and only, committed values.

the body of the object to null (line 13). The CAS fails if the current value of the field
body is no longer the body that was trimmed, which may happen only if one or more
transactions commit new values for this object. So, when the CAS fails nothing else
needs to be done, as the object cannot be reverted.

6.2.2 Extending Objects

When an object is created, it is naturally in the compact layout. Moreover, when using
LICM, the object will stay in the compact layout even when its owning transaction

88

6.2. THE ADAPTIVE OBJECT METADATA APPROACH

commits and publishes it. This is safe because the object is not shared until that trans-
action successfully commits, and, therefore, no other transaction may need another
version of that object.

So, when does a transactional object need to be extended? As mentioned before,
we need to extend an object only when we need to have more than one version of the
object, which happens only when a transaction writes a new value to any of the object’s
fields and successfully commits those changes.

Thus, similarly to what was done for the reversion of an object, the extension oper-
ation is piggybacked into the write-back phase of the commit: The object is extended
during the write-back if it is in the compact layout. In this case, however, we cannot use
locks in the extension operation if we want the entire commit operation to be lock-free.

In Listing 6.4 I show the new code for the write-back phase, which includes the code
to extend objects if needed. When trying to add a new version to an object, the write-
back operation must now check if the object is in the compact layout (line 6). If it is,
then the previous version of the object’s state is in the object’s own fields, rather than in
its (nonexistent) history. Thus, to add the new version to the previous version, it must
extend the object such that both versions are in the object’s history (because after the
extension no transaction will look into the object’s fields). This is accomplished by: (1)
creating a snapshot of the object (line 7), (2) creating an entry for the snapshot that is
marked with version 0 (line 8), and (3) creating the entry for the new value and version
that points to the entry with version 0 (line 9). If the object is not in the compact
layout, then the write-back works as before, by creating a new entry for the new value
and version (line 11). In either case, the operation proceeds by calling the CASbody

method (line 13) to update the history, which in the case of an extension corresponds
to installing a new history. An example of a successful extension that goes through all
these steps is shown in Figure 6.5.

The method CASbody was also changed. Previously, it attempted to CAS to the
new body only once and returned even if the CAS failed, because the only reason
why the CAS operation could fail was if some other thread performed the write-back
of an identical body, in which case there was nothing else to do. With the AOM,
however, there may be another reason for a failure of the CAS: A concurrent GC
thread may revert the object back to its compact layout between the read of the object’s
body (line 3) and the attempt to CAS it to the new value (line 20); such a reversion
changes the value of body to null and the CAS fails. But in this case the new value was
not added to the object’s history and, therefore, we need to try to add it again. This

89

CHAPTER 6. ADAPTIVE OBJECT METADATA

1 // in class VBox:

2 VBoxBody commit (Object newValue , int txNumber) {

3 VBoxBody currHead = this.body;

4 if (currHead == null || currHead . version < txNumber) {

5 VBoxBody newBody = null;
6 if (currHead == null) {

7 Object v0 = this.snapshot(); // step 1

8 VBoxBody body0 = new VBoxBody(v0, 0, null); // step 2

9 newBody = new VBoxBody(newValue, txNumber, body0); // step 3

10 } else {

11 newBody = new VBoxBody (newValue , txNumber , currHead);

12 }

13 return CASbody (currHead , newBody); // step 4

14 } else {

15 return currHead . getBody (txNumber);

16 }

17 }

19 VBoxBody CASbody (VBoxBody expected , VBoxBody newBody) {

20 if (compareAndSwapObject (this , bodyOffset , expected , newBody)) {

21 return newBody ;

22 } else {

23 // If the CAS failed then either the new value must already be there,
24 // or the object may have been reverted by a concurrent GC Task,
25 // in which case we need to retry the CAS to commit the new body.
26 // If the second CAS fails, then some other thread did the write-back.
27 VBoxBody currHead = this.body;
28 if (currHead == null) {

29 if (compareAndSwapObject(this, bodyOffset, null, newBody)) {
30 return newBody;
31 } else {

32 return this.body.getBody(newBody.version);

33 }
34 } else {
35 return currHead.getBody(newBody.version);

36 }

37 }

38 }

Listing 6.4: New write-back algorithm of the VBox class including the extension.
I show in bold the code that was added to the original code of the JVSTM.

90

6.2. THE ADAPTIVE OBJECT METADATA APPROACH

:VBoxBody

previous: null

version: 0

value:

:VBoxBody

previous:

version: 20

value:

:Point

body: null

x: 11

y: 13

2

4

3

:Point

x: 22

y: 26

:Point

x: 11

y: 13

:Point

body:

x: 11

y: 13

2

null
3

1

1 snapshot()

:VBoxBody

previous: null

version: 0

value:

:Point

x: 11

y: 13

toCompactLayout()

Figure 6.5: An example of a transaction that commits the values 22 and 26 to the
fields x and y, respectively, of a Point, which was in the compact layout and was
storing the values 11 and 13 before.

scenario is identified by reading again the object’s body (line 27) and checking whether
it is null (line 28), in which case the CAS is attempted once again (line 29) to swing
the field body from null to the new body. If this second attempt of the CAS fails, then
it is because this body was written back by some helper. I shall return to why this is so
in Section 6.2.4, where I discuss the correctness of my AOM algorithms.

6.2.3 Reading Objects

Given that with AOM objects may be in one of two possible layouts, the read operation
must take the layout into account when accessing an object. So, the first thing that a
read operation does is to check whether the field body of the object is null. If it is,
the read operation uses a fast path that directly accesses the other fields of the object—I
refer to these as proper fields.

Consider the case of a thread Th1 that is executing transaction Tx1 with a reading
version v1. To read the proper field of an object Ob, Th1 must find null at the field
body. Otherwise, it goes through the history found in body until it finds the correct
version and then reads the proper field of the corresponding snapshot. The latter case is
the original algorithm of the JVSTM, which traverses only immutable data structures.

For read-write transactions we must still log the read operation in the read-set for
objects in both layouts. But for read-only transactions we do not need to keep any
log and, therefore, reading an object in the compact layout has almost no overhead
over accessing directly an object’s field without an STM barrier: We just have to check
whether the body field is pointing to null or not.

On the other hand, if the object is extended, then the read operation will always
have to search for the correct version in the history. So, even if the required version is

91

CHAPTER 6. ADAPTIVE OBJECT METADATA

found at the head of the history, the read operation still has the overhead of traversing
two pointers: One from the field body to the entry at the head of the history and an-
other from that entry to the snapshot containing the value to be accessed. This pointer
chasing typically results in poor cache locality, further contributing to the degradation
of the performance.

6.2.4 Correctness of the AOM Operations

After presenting the algorithms for reverting, extending, and reading an object, I discuss
now the correctness of those algorithms while giving the rationale for my design.

As in the original JVSTM, in AOM the objects representing an history entry—
instances of the class VBoxBody—are immutable. They are created during the write-
back phase of a transaction’s commit and once created cannot be changed. Likewise
for the snapshots, which are the instances of the transactional classes that are created
to represent the value of an object at a particular version. Snapshots are created also
during the write-back (which may include the extension of an object) and stored in the
history entries before they are made available to other threads.

So, the only interesting cases that may be both read and written by multiple threads
are the fields of a transactional object. Whereas without AOM only the field body

is used, with AOM the proper fields of a transactional object may also be read and
written.

To help us reason about the correctness of AOM it is useful to make a couple of
observations about the JVSTM first.

In the JVSTM, a thread Th1 will help a transaction Tx to commit (e.g., by doing its
write-back) only if Th1 is itself executing a transaction Tx1 (possibly Tx) that wants to
make progress. This means that Tx1 must have started before the commit of Tx. So,
if Tx commits with the version v, the version with which Tx1 started (i.e., its reading
version), v1, is necessarily smaller than v (i.e., v1 < v). Moreover, all commits are done
in order—that is, only after the write-back for version v is completed may any thread
start doing the write-back for version v + 1. Given these observations, I may now
establish some results regarding AOM.

I start with a theorem establishing the impossibility of a late write-back.

92

6.2. THE ADAPTIVE OBJECT METADATA APPROACH

Theorem 1. A thread that arrives at the write-back of an object Ob for some transaction
Tx after at least another thread has successfully finished that write-back will not change the
object in any way.

Proof. This result is trivially guaranteed in the original JVSTM because each helping
thread reads the value of the field body before deciding whether it needs to do the
write-back. If it finds an entry corresponding to the write-back that it is trying to do,
it returns without changing the object; otherwise it tries to install a new entry with a
CAS. Yet, only the first attempted CAS will succeed and all others will fail because late
threads will find the value of body changed since they first saw it. With AOM, however,
the field body may swing back and forth between null and some other values (due to
reversions). So, we need to check whether a late thread may find a null value in the
field body and decide to add a new version, even though that version has been written
before.

Assume that Th1 is a late thread in the write-back of Ob for Tx. That means that
some other thread Th2 must have completed the write-back of Ob for the same trans-
action Tx, necessarily leaving in the field body of Ob an history containing at least two
versions: the version v and its previous version. So, for Th1 to find a null value in
the field body of Ob after the write-back done by Th2, Ob must have been reverted in
the meanwhile. Yet, if Tx1 is executing, Ob cannot be reverted, because it will need to
keep at least two versions until Tx1 finishes (the version v, which cannot be accessed
by Tx1, and the previous version). On the other hand, if the reversion occurs before
Tx1 starts, then it is because the commit of Tx had already finished and, therefore, Tx1

would not have a version v1 < v.

Theorem 2. If a thread Th1 is executing the write-back of a transactional object Ob, then
Ob is reverted at most once until Th1 finishes the write-back, regardless of how long it takes.

Proof. Let us assume that, while Th1 is executing the write-back of Ob, there are two
reversions for Ob. If that is the case, then Ob must have been extended in between the
two reversions, while Th1 is still running. Given that by Theorem 1 there are no late
write-backs, that extension must have occurred as part of the write-back of Ob for some
version v such that v > v1 (where v1 is the reading version of the transaction that Th1

is still executing). So, at least until Th1 finishes the execution of the write-back of Ob,
Ob cannot be reverted again, because Tx1 cannot access the version v of Ob.

Theorem 2 justifies why the method CASbody in Listing 6.4 tries to attempt the
CAS only once after a failure of the CAS at line 20: The failure of the first CAS may

93

CHAPTER 6. ADAPTIVE OBJECT METADATA

be due to a concurrent reversion, but the failure of the second CAS cannot, because
it is not possible to have two reversions for the same object while a write-back is in
progress. A similar, simpler result is the following.

Theorem 3. If a thread Th1 executing a transaction Tx1 reads a transactional object Ob

and sees Ob in the compact layout, then Ob cannot be both extended and reverted until Th1

finishes executing Tx1.

Proof. The reasoning for this proof is similar to the previous one. Assume that the
reading version for Tx1 is v1. If Ob is extended after Th1 sees it in the compact layout,
then it must be because of a write-back to Ob that created a version v such that v1 < v.
After that extension, Ob cannot be reverted while Tx1 is still running, because it cannot
access v.

Given these three theorems, I may now discuss the correctness of each of the AOM
operations.

Correctness of the read operation

Consider the case of a thread Th1 that is executing transaction Tx1 with a reading
version v1. If Th1 finds the object Ob in the compact layout, then it must be because the
most recent version of Ob, let us call it vob, is such that vob < v1 and the proper fields of
Ob contain the values corresponding to that version vob. Otherwise, either the reversion
could not have occurred, or Tx1 would have another, higher version. Moreover, by
Theorem 3, we know that while Th1 is executing Tx1, Ob may be extended but it
cannot be reverted again. Given that only the reversion writes into the proper fields of
an object, we know that the values in the proper fields of Ob are the values that Th1

needs to read and, thus, that it is safe for Th1 to read them.

If, on the other hand, Th1 finds Ob in the extended layout, it will be able to find the
version that it needs in its history. To see why, consider the two possible scenarios: (1)
the last change to Ob occurred before Tx1 started, and (2) Ob was changed after Tx1

started, but before Th1 attempted to read it. In the first scenario, if Ob is still in the
extended layout, it is because no reversion for Ob occurred in the meanwhile and the
head of the history contains the entry that Th1 needs to read. In the second scenario,
either Ob was already extended and the new commits simply added new versions to
the head of the history, or Ob was extended by the first of the commits, creating not
only a newer snapshot but also a snapshot for version 0 with the values of Ob’s proper

94

6.2. THE ADAPTIVE OBJECT METADATA APPROACH

fields. In both cases, Th1 will jump over the entries at the head of the history until it
finds an entry with a version that it can read (possibly, version 0 that results from the
extension). We shall see below why it is correct to create this version 0.

Correctness of the reversion operation

Only the reversion operation writes to proper fields, through the execution of the
method toCompactLayout, which copies the values of a snapshot into the proper
fields. Given that doing this copy requires acquiring the object’s monitor, no two
concurrent threads may be copying values back to the proper fields at the same time
and, thus, after a reversion the values at the proper fields of an object will necessarily
reflect a consistent set of values for some version (obtained from a given immutable
snapshot).

Yet, while the copy is executing, the values in the proper fields may correspond to
an inconsistent set of values, as some fields have already been copied while others have
not. So, we need to ensure that while such a copy is in progress no reads of the proper
fields are made.

With AOM, proper fields may be read only in two cases: (1) when reading an object
during a transaction, and (2) when extending an object during the write-back (by the
execution of the method snapshot). In both cases, the proper fields are read only if
the field body was found to be null.

On the other hand, the reversion operation tries to change the field body back to
null only after copying all values from a snapshot into the proper fields (see lines 12
and 13 in Listing 6.3). This is done with a tentative CAS of body from the entry
containing the snapshot to null. This reset of the field body may fail if another thread
concurrently commits a new value to this object, in which case it installs a new entry
in body. In this case, the copy of the snapshot back into the proper fields was in vain
because the object may no longer be reverted. Still, the values copied are consistent
after the copy. But, more importantly, given that body was never null, no read of the
proper fields may have occurred during the copy. So, reversions are guaranteed to occur
only when they are safe with regard to potential concurrent reads.

95

CHAPTER 6. ADAPTIVE OBJECT METADATA

Correctness of the extension operation

The behavior of the write-back of an object when the object is in the extended layout
was not changed with the AOM. So, we just need to consider the case of doing a write-
back for an object that is in the compact layout.

We have two scenarios to consider: (1) when the write-back operation first sees
the object extended but the object is reverted during the write-back, and (2) when the
write-back operation sees the object already in the compact layout.

In the first scenario, the write-back obtains the object’s current history and creates
a new entry to add at the beginning, as in the normal case. Yet, when it tries to install
the new history the CAS fails because the object was reverted in the meanwhile. Still,
the newly computed history is still correct and may be installed in the body, effectively
extending the object again. This is accomplished by the second CAS in the method
CASbody. As discussed before, after this second CAS it is guaranteed that the new
version will be installed in the object.

In the second scenario, the write-back operation needs to create a snapshot of the
object to capture the current values of its proper fields. This snapshot is tagged with
version 0 and added to the history, just after the newly created version. As we saw
before, this snapshot is guaranteed to obtain a consistent view of the object’s state. The
version 0 is used because an object in the compact layout has no information about
which version its values correspond to. Still, we know that it must be the case that no
previous version would be needed by any of the running transactions (or else the object
would not be in the compact layout), and, thus, we may use any version that is lower
than the oldest running transaction; version 0 satisfies trivially this constraint.

6.3 Implementation Approaches

As happens for other optimization techniques the AOM requires a specific object model
distinct from the one provided by the managed runtime environment, which allows
to store additional STM metadata in-place within the transactional objects. Thus, to
build the AOM solution, I developed two different implementations that follow two
implementation approaches: (1) at the virtual machine runtime level, and (2) through
Java bytecode instrumentation. Both solutions are implemented in the Java platform.

96

6.3. IMPLEMENTATION APPROACHES

In the following subsection I introduce the basics of the Java Object Model, which is
the basis for both implementations. After that, in Subsections 6.3.2 and 6.3.3, I give an
overview about the requirements of both implementations: the former implementation
uses the Jikes Research Virtual Machine (Jikes RVM) [Alpern et al. , 2005] and the latter
was integrated in the Deuce STM engine [Korland et al. , 2010].

In Appendix B, I give further details about my extension to Jikes RVM’s just-in-time
compiler to support the integration of the JVSTM with AOM.

6.3.1 Basics of the Java Object Model

Managed runtime environments for object-oriented programming languages such as
Java represent objects in memory according to a set of rules on how to layout, not only
the fields of an object, but also all the remaining metadata associated to each object—for
instance, the type of the object, its lock, or its hashcode. The set of rules describing how
to layout an object is called the object model of the runtime environment. Naturally,
different runtime environments, even if for the same language, have different object
models, which may depend on various factors, including the computer architecture on
which the runtime environment executes.

The Java type system is organized in two distinct groups of data types: primitives
and references. Instances of primitive types are stored in-place. This means that they
are allocated in the stack frame of the method that has instantiated them, or in the
storage of an object or a class. Primitive types in Java are used and passed by value. In
other words, when a primitive value is assigned or passed as an argument to a method,
it is simply copied.

Instances of reference types (also known as objects), on the other hand, have their
storage allocated in the heap memory space, which keeps the values of object’s instance
fields. The value of each field is stored in a minimum of one word slot and a maximum
of two slots.2

Unlike primitives, objects are accessed by reference. A reference is simply a pointer
for the storage of an object. In turn, a variable of a reference type holds a reference to
the corresponding storage. For example, in Jikes RVM a reference to an object always

2Most virtual machines make some exceptions to improve alignment and pack the fields in an object.
For instance, two fields of a 16-bits type could be stored in the same slot. Yet, this optimization is
beyond the scope of this discussion. My implementation does not interfere with the way how the virtual
machine lays out the object’s fields.

97

CHAPTER 6. ADAPTIVE OBJECT METADATA

points to the second slot of the instance field’s region, as shown in Figure 6.6. Instance
fields are recorded in heap space in the same order that they are declared in the Java
source file3, as shown in Figure 6.6.

Figure 6.6: Object’s storage layout. For each instance field declared by class A

there is a specific storage (one or two slots) that keeps its value. In the case of the
y instance field, it takes two slots to keep a double word value.

Besides the slots for instance fields, all objects have a fixed number of specific slots
for metadata information. This portion of an object’s heap storage is called the header
of the object, and is depicted also in Figure 6.6. According to my AOM design, trans-
actional objects may have the layout that is natively specified by the managed runtime
environment, avoiding any extra STM structure and, consequently, extra indirections.

6.3.2 Integrating JVSTM with AOM in Jikes RVM

The Jikes RVM (Jikes Research Virtual Machine) [Alpern et al. , 2005] is a research
project to create an open-source Java virtual machine. One of the key differences from
many other virtual machines is that it is implemented in Java and that it only uses a
small amount of C code for accessing the operating system.

In this work, I describe my approach on top of the object model used by the Jikes
RVM runtime environment for the Intel’s x86 architecture. Yet, my proposal is appli-
cable to other architectures.

In the following subsection I describe the STM interface of the AOM implementa-
tion. After that, I explain the modifications required in the Jikes RVM to support the
integration of an STM.

3Except if the virtual machine packs the fields to improve alignment.

98

6.3. IMPLEMENTATION APPROACHES

STM Interface

To support program-level transactions I provide a method annotation, @Atomic, and
a type annotation, @Transactional. Every method that is supposed to be executed
as a transaction is marked with @Atomic and is called an atomic method. The objects
accessed by atomic methods should be instances of classes annotated with @Transac-

tional, except for immutable objects, such as strings, which are naturally thread safe.

If a thread executes a method m atomically, all changes to transactional objects in the
context of that method m are serializable with respect to other transactions. When m

completes successfully, its effects over transactional objects become globally visible. For
transactional objects, even when they are accessed outside of a transaction the system
guarantees strong atomicity [Martin et al. , 2006] because non-transactional accesses to
those objects are implemented as single-instruction transactions. Yet, the system just
satisfies this property for instances of classes that are correctly annotated. For non-
transactional objects the system does not guarantees even weak atomicity [Martin et al.
, 2006], because it does not guarantee any isolation between transactional and non-
transactional accesses to those objects.

When a transaction starts, it becomes the thread’s current transaction until it fin-
ishes or another nested transaction starts. When a transaction finishes, its parent, if
any, becomes the thread’s current transaction. Because nested transactions are exe-
cuted by the same thread of their parents, when a nested transaction is executing, the
parent transaction is not. Once a transaction starts, it is stored in the corresponding
RVMThread object that represents a Java thread’s execution context in Jikes RVM. At
runtime the RVMThread object is referred by RVMProcessor object, which is accessible
via the processor register—esi for IA32 architecture—as presented in Figure 6.7. So,
from any point of execution we can know if we are, or not, in a transactional context
by consulting the RVMThread object.

Figure 6.7: Processor register

Calling an atomic method m corresponds to wrap that invocation as shown in listing
6.5. This code is generated by the just-in-time compiler (see Appendix B for further
details). For now, to better express the algorithm I choose the Java language.

99

CHAPTER 6. ADAPTIVE OBJECT METADATA

1 do{

2 Transaction .begin(getCurrentThreadFromProcessorRegister ());

3 m();

4 } while(Transaction . tryCommit () != Status . SUCCEED)

Listing 6.5: Wrapping m call in a transaction control flow

According to the Java specification a method caller is responsible for pushing argu-
ments on the stack and the callee for cleaning those arguments and push the method
result, if it exists. This means that we must preserve a backup of the method’s argu-
ments, in case we have to repeat the invocation of the atomic method. I also leave the
details of that solution to Appendix B.

So, to turn a method m into an atomic method we must call Transaction.begin

before calling m and Transaction.tryCommit at the end of m execution. Finally, we
have to evaluate tryCommit returned value and if it has not succeeded we must restart a
new transaction. The static methods begin and tryCommit of the class Transaction

encapsulate all logic details about transactions management.

The begin method creates an instance of a Transaction subclass and initializes
the required data structures (read-set and write-set, in case of a read-write transaction) to
record all read and write operations made in the scope of a transaction. The tryCommit

operation checks if the current transaction is valid and if so, it performs the commit
operation storing all mappings from the write-set into box bodies of the corresponding
versioned boxes.

Making the Jikes RVM Runtime Transactional

To execute atomically, a method has to perform the following actions:

1. Create a new transaction object, which for read-write transactions includes ini-
tializing its internal data structures: read-set and write-set;

2. Register all method’s read and write operations in the transaction’s read-set and
write-set, instead of accessing the standard object fields locations.

3. At the end, try to commit the transaction and in case of failure it must repeat the
execution restarting on the first point.

100

6.3. IMPLEMENTATION APPROACHES

To accomplish the first and the third points, we must wrap the method invocation
into a transaction control flow, as shown in Listing 6.5. This integration is made at
the just-in-time compiler level by evaluating the method’s annotations: if Atomic is
present we must insert the appropriate STM calls. For a method to behave as explained
in the second point, we can follow two different approaches. One possible solution is
to create a second version of each atomic method—a transactional twin (see, e.g., [Yoo
et al. , 2008] and [Korland et al. , 2010] for a similar approach)—that replaces every field
access with an STM barrier. This method should be called from the transaction control
flow (Listing 6.5), replacing the invocation of the original method and every invocation
to an atomic method from inside this method should also be replaced with a call to the
corresponding transactional twin.

I chose a different approach that changes the default behavior of the getfield and
putfield bytecodes. If the target of these operations is an object not marked with
Transactional, we have nothing else to do and these bytecodes perform just their
default behavior. This choice is made at just-in-time compile time and compromise my
solution to the assumption that if a class is transactional, then all inherited fields must
be from transactional classes too. On the other hand, given that I have modified the
Jikes RVM object model, we must change the way that the putfield and getfield

bytecodes access values from fields of transactional objects.

Every time a putfield operation is performed to a transactional object it just has
to register that operation in the current transaction’s write-set. If there is no transaction,
a new one must be created and committed at the end. These tasks are encapsulated in
the corresponding STM write barrier, that is defined by a static method write<field’s

type> of the class VBox. For each primitive type there is a corresponding static method
in the class VBox with a parameter according to that primitive type. There is also a
writeObject static method with a parameter of type Object that handles all write
operations to reference type fields.

The getfield operation has to access in the first place the object’s header to rec-
ognize the layout of the object and find out where it should read the field’s value: from
the object’s field location or from the versioned box. If that object is in the extended
layout it must read its fields values via an STM read barrier. This is done through the
read<field’s type> static methods of VBox class. As happens in STM write barriers,
for each primitive-type there is a corresponding static method in the class VBox, which
has the return type corresponding to the field’s type. The just-in-time compiler is re-
sponsible for determining to which method should emit the call. The value returned
from the STM read barrier stays on the evaluation stack as the result of the getfield

101

CHAPTER 6. ADAPTIVE OBJECT METADATA

1 ; Object ’s reference is on the top of stack and is copied to ecx.

2 I0: mov ecx , [esp]

3 ; Compare object ’s header with Null.

4 I1: cmp [ecx - HEADER_OFFSET], NULL

5 I2: jeq stdRead

6 I3: ; The 1st argument is the object ’s reference (already on stack)

7 ; The 2nd argument is the field ’s offset

8 ; The 3rd argument is the VBox ’s reference

9 I4: push fieldOffset

10 I5: push [ecx - HEADER_OFFSET]

11 I6: call VBox.read <field ‘s type >

12 I7: jmp done

13 stdRead :

14 I8: ; Default behavior of getfield.

15 I9: call VBox.registerRead

16 done:

Listing 6.6: Behavior of getfield operation for atomic objects expressed in
IA32.

operation. If the read object is in the compact layout, then the getfield can read the
object’s fields directly. Yet, at the end, it must still call the registerRead static method
of VBox class, to record that operation in the transaction’s read-set.

So, at runtime and for atomic objects, the putfield bytecode is always translated
into a simple call to the corresponding STM write barrier and the getfield bytecode
is translated to the algorithm presented in Listing 6.6.

6.3.3 Extending Deuce STM

Despite the promising results obtained with the prototype of the JVSTM with AOM
in Jikes RVM, this prototype falls short of the efficiency gains that I was aiming for.
Essentially, the lack of efficiency of this implementation is due to the undesired effects
of the modifications made to the just-in-time compiler, which interfere with the code
optimization process and degrades the overall performance.

So, I chose a different technological environment and I redesigned my solution to
the model of the Deuce STM framework. Yet, the original Deuce STM provides exten-
sibility only in terms of the specification of the STM algorithm and it does not allow
either the definition of additional behavior orthogonal to all STMs, or any modifica-
tion to the standard type system. To support the JVSTM and the AOM it is mandatory

102

6.3. IMPLEMENTATION APPROACHES

to store metatada in-place within the transactional object. So, I had to extend Deuce
STM to support this feature.4

Yet, I could not follow the same approach of the Jikes RVM implementation, which
takes advantage of the object’s header to store the handle of the object’s history. So, I
have to add to all transactional objects an additional field body to point to its history of
values. To that end, I change the hierarchy of the transactional classes to inherit from
the VBox class.

In the following, I explain how transactional classes are enhanced to inherit from
VBox. After that, I describe the solution for transactional arrays.

Enhancing Regular Objects

To support this feature, I added to the Deuce framework a new infrastructure that
allows the specification and execution of enhancers, which are additional transforma-
tions to the standard Deuce instrumentation (for more information about this new
infrastructure and its design, see Appendix C). For instance, in the case of JVSTM,
we need to combine a post enhancer that transforms the definition of transactional
arrays—EnhanceVBoxArrays—and we also need to include a pre enhancer that makes
a required transformation to support static fields—EnhanceStaticFields (all JVSTM
enhancers belong to the package org.deuce.transform.jvstm). For static fields,
and due to restrictions of the Java object model, I chose to transform static fields into
instance fields of a well-known singleton class. After the previous transformations,
all memory locations, including arrays and static fields, are instrumented by the same
enhancer—EnhanceTransactional.

Enhancing Arrays

The enhancer EnhanceTransactional defines the transformation responsible for re-
placing the root of the transactional classes hierarchy from Object to VBox. However,
I cannot apply the same approach for arrays, because we cannot change their base class.
So, we need to wrap arrays with instances of the class AbstractVBoxArray, which in
turn inherits from VBox. But, this class does not hold an elements field array, because
we cannot define a generic array comprising arrays of all primitive types. So, we have

4This adaptation of Deuce is available at https://github.com/inesc-id-esw/deucestm/

103

CHAPTER 6. ADAPTIVE OBJECT METADATA

one class for each primitive type and another class for arrays of reference types. The
name of these classes follow the convention VBox<T>Array.

The enhancer EnhanceVBoxArrays is responsible for this transformation and for
replacing all operations that deal with arrays with new operations manipulating in-
stances of the AbstractVBoxArray class. This approach allows us to store metadata
in-place for regular objects only, or for both objects and arrays, depending on the en-
hancers that we pass to Deuce.

Furthermore, wrapping arrays in VBox objects adds an extra indirection when they
are accessed from non-transactional code, because these objects are no longer arrays
themselves. Note that for regular objects, I do not change their behavior: I preserve
their original structure and interface, which can be accessed either from transactional
or non-transactional code. So, unlike with regular objects, when I access arrays from
non-transactional code I have to get the encapsulated array from the VBox object. But,
unlike unidimensional arrays, where the unwrap operation consists only in getting its
elements field, for multidimensional arrays I need to instantiate a new array and copy
the elements from each unidimensional array that is encapsulated in its own VBox object
array. For this reason, in my current approach, the unwrap of a multidimensional array
has a huge overhead.

Note that we cannot let the inner dimensions of a multidimensional array be ordi-
nary arrays. In Java, the elements of a multidimensional array are accessed as a series
of unidimensional accesses (e.g. in the case of a bidimensional array stored in a field we
need to perform an aaload5 to get the reference to the inner array, followed by another
array access). All of these operations (which may not appear collocated in the code, be-
cause we may pass an inner array as an argument to a method) are instrumented by the
Deuce STM and replaced by STM barriers. So, if we let the inner array be an ordinary
array then we cannot access the object’s history in the second barrier.

Thus, the reverse process of unwrapping a multidimensional array from the VBox

object forces us to rebuild the entire multidimensional array from the elements encap-
sulated on each array of every inner VBox object, instead of just getting the reference to
the internal array, as happens for unidimensional arrays. Yet, I disallowed the unwrap
of multidimensional arrays (throwing an UnsupportedOperationException), due to
the overhead of this operation and in this case, I recommend one of the following alter-
native options, if possible: (1) to exclude the owner class from Deuce instrumentation;
or (2) to access the array always from atomic methods, such as atomic indexers.

5Load onto the stack a reference from an array

104

6.4. VALIDATION

6.4 Validation

In Chapter 5, I evaluated the improvement in performance and memory consumption
of an STM enhanced with the LICM optimization technique. In this Section, I evaluate
the behavior of the JVSTM enhanced only with the AOM, and without the LICM
support. Later, in Chapter 7, I will show the effects of both optimization techniques
over the JVSTM.

In the following subsection I show a performance evaluation of the AOM for a
diversity of benchmarks and, then, in subsection 6.4.2, I also show the results of an
application’s memory consumption with and without the AOM.

6.4.1 Performance Evaluation

To evaluate the performance of the AOM approach, I compare the original lock-free
implementation of the JVSTM (jvstm) with the same algorithm enhanced with the
AOM (jvstm-aom). In both cases I use the Deuce STM to automatically transactify the
evaluated benchmark.

I analyze the performance of the STMs in the STMBench7 benchmark, in the Va-
cation application of the STAMP benchmark, and the JWormBench. Given that the
STMBench7 and the JWormBench benchmarks also have a medium/fine-grained lock-
ing synchronization strategy, I also compare the performance of the lock-based ap-
proach with the STM-based approach.

Vacation

The Vacation application emulates a travel reservation system where customers concur-
rently make requests that affect some of the application’s items (such as flights and cars):
Each request from a customer is composed of operations—such as reserving a car, or
cancelling a reservation—that must be performed atomically. Because all the operations
that take place in a request include at least some transactional writes, this application
does not take advantage of read-only transactions. The application holds the global
items in red-black trees, one for each type of item, including the customers themselves.
On the other hand, each customer contains a list that points to each resource that it
reserved.

105

CHAPTER 6. ADAPTIVE OBJECT METADATA

jvstm jvstm-aom tl2

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 24 32 40 48

T
im

e
 (

se
c)

Threads

Vacation low

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 24 32 40 48

T
im

e
 (

se
c)

Threads

Vacation high

Figure 6.8: The results for Vacation with TL2 and JVSTM, in the two workloads
(low and high contention).

I ran this benchmark with the configurations proposed by [Cao Minh et al. , 2008],
but because I want to emulate the behavior of large-scale programs, I used larger data
sets. So, instead of the proposed value for the parameter n (between 2 and 4), which
specifies the number of items operated by session and that is directly related to the
transaction’s length, I used a higher number of 256 items. Thus, for the low contention
scenario I used the parameters “-n 256 -q 90 -u 98 -r 262144 -t 65536”, whereas for the
high contention scenario I used the parameters “-n 256 -q 60 -u 90 -r 262144 -t 65536”.

These tests were performed on a machine with 4 AMD OpteronT M 6168 processors,
each one with 12 cores, resulting in a total of 48 cores. The JVM version used was the
1.6.0_33-b03, running on Ubuntu with Linux kernel version 2.6.32.

I present in Figure 6.8 the results obtained for the two workloads of the Vacation
benchmark with three different STMs. Because Vacation does not provide a lock-based
synchronization alternative, I include also the results of the TL2 for comparison with
the JVSTM and the JVSTM-AOM (LSA presents similar performance to the TL2).

In Vacation, the items operated by each transaction are randomly selected by each
customer. Thus, because we use large data sets, there is a low probability that two
consecutive transactions performed by the same customer (or even two concurrent
transactions) update the same items. Furthermore, all transactions need to traverse
the global structures containing the application items to find the selected resources.
These lookups perform many memory reads over transactional objects that are seldom
changed. So, I expect to be able to improve the performance of the benchmark if I keep
transactional objects in a compact layout, thereby promoting the use of lightweight
STM barriers. In fact, there is an advantage in reverting the transactional objects to the
compact layout whenever possible to accelerate the lookup phase of each transaction

106

6.4. VALIDATION

and therefore improve the overall performance of the benchmark. This is the reason
why the AOM improves the performance of the JVSTM in both workloads of the Va-
cation: As shown in Figure 6.8 the jvstm-aom reduces the time taken to execute the
benchmark to almost half of the time taken by jvstm in the best case.

STMBench7 benchmark

These tests were performed on a machine with two quad-core Intel Xeon CPUs E5520
with hyper-threading, resulting in 8 cores and 16 hardware threads.

As in the case of the Vacation benchmark, in the STMBench7 the AOM can also
improve the performance of the JVSTM when the traverse operations are dominated by
read accesses. In a read dominated workload the AOM can duplicate the performance of
the baseline JVSTM as depicted in the results of Figure 6.9. On the other hand, when we
increase the update rate, the benefits of the AOM are reduced because of the overhead
incurred by the extension of transactional objects. If we have too many objects being
extended and reverted back consecutively between the two layouts, then the benefits of
the lighter read barriers cannot overtake the overheads of the layout transitions. Yet,
the results of Figure 6.9 show that even in the write-dominated workload the AOM
adds only a residual overhead that does not degrade the performance of the JVSTM.

JWormBench benchmark

In my experimental tests with the JWormBench, I used the following configuration
for both workloads: a world consisting of 1024 nodes and 48 worms with a head’s size
varying between 2 and 16 nodes, which dictates transactions with an average length
between 4 and 256 read/write accesses.

As we can observe in the results shown in Figure 6.10, for the read dominated
workload the AOM improves the performance of the JVSTM by 2.5-fold. In the case
of the workload dominated by write operations we can observe the same effect verified
in the STMBench7 with the write-dominated workload. When we increase the number
of worker threads, then we also increase the contention and the number of objects that
stay in the compact layout reduces. Therefore, the overhead of the increasing number
of layout transitions degrades the performance of the AOM.

107

CHAPTER 6. ADAPTIVE OBJECT METADATA

jvstm jvstm-aom medium-lock coarse-lock

0,0

5,0

10,0

15,0

20,0

25,0

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

Read-dominated

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

Read-write

0,0

1,0

2,0

3,0

4,0

5,0

6,0

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

Write-dominated

Figure 6.9: The results for STMBench7 with JVSTM, in the three available work-
loads, without long traversal operations.

1 4 16 32 48

jvstm jvstm-aom coarse-lock fine-lock

0,0

50,0

100,0

150,0

200,0

250,0

300,0

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(×

1
0

3
)

o
p

s/
s

Threads

50% RO trxs, O(n2), N Reads, 1 Write

-10

10

30

50

70

90

110

130

150

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(×

1
0

3
)

o
p

s/
s

Threads

50% RO trxs, O(n2), N Reads, N Writes

Figure 6.10: The JWormBench throughput for JVSTM and locks, for two differ-
ent workloads. The latter workload performs the same number of write accesses
as read accesses.

108

6.5. SUMMARY

6.4.2 Memory Consumption Evaluation

I do not include the JWormBench in these experimental analysis, because this bench-
mark does not use large data sets and, therefore, are not visible in this case the effects of
the AOM over the memory heap size.

I ran my tests with just one worker thread for approximately thirty minutes and
I collected the results from the verbose garbage collector (GC) output. In all results I
show the values of three parameters during the execution of each benchmark: (1) the
combined size of live objects before GC, (2) the size of live objects after GC, and (3) the
total available space, corresponding to the maximum heap size.

STMBench7 benchmark

In the results of Figure 6.11, we can observe that there is a reduction of around 20%
in memory consumption of live objects after GC, when we execute the JVSTM with
the AOM, except for the write-dominated scenario where we expect to have just a few
number of objects in the compact layout due to the high rate of write operations.

Most visible is the reduction of the application footprint, which saves almost 50%
of memory space in the case of the read write workload.

Vacation benchmark

In the results of Figure 6.12 on page 111, we can observe a significant reduction in
the three parameters of the GC, around 1 Gb of memory space, when we execute
the JVSTM with the AOM. In this case we do not register any differences between the
results collected for both workloads of the Vacation benchmark, because the workloads
use the same update rate and they just differ in the contention level.

6.5 Summary

In this Chapter I introduce an adaptive object metadata approach into an object-based
design for a multi-versioning STM, and I provide experimental results that show an
improvement in the performance of workloads where the number of objects written is
much lower than the total number of transactional objects.

109

CHAPTER 6. ADAPTIVE OBJECT METADATA

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800

M
b

Seconds

Read Dominated

JVSTM

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800

M
b

Seconds

Read Dominated

JVSTM AOM

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400 1600 1800

M
b

Seconds

Read Write

JVSTM

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400 1600 1800

M
b

Seconds

Read Write

JVSTM AOM

020040060080010001200140016001800

0

Before GC After GC Available

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400 1600 1800

M
b

Seconds

Write Dominated JVSTM

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400 1600 1800

M
b

Seconds

Write Dominated JVSTM AOM

Figure 6.11: The STMBench7 memory consumption for JVSTM with, and with-
out AOM, in three different workloads, without long traversal operations.

Furthermore, the use of a lock-free commit algorithm requires an in-depth analysis
of the possible inter-leavings of concurrent layout transitions, which I also discuss to
prove the correctness of the new AOM algorithm while giving the rationale for my
design along that discussion.

Finally I analysed two possible implementations of my proposal that follow two dif-

110

6.5. SUMMARY

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800

M
b

Seconds

Vacation Low

JVSTM

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600

M
b

Seconds

Vacation Low

JVSTM AOM

02004006008001000120014001600180020002200

0 200

Before GC After GC Available

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000

M
b

Seconds

Vacation High

JVSTM

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600

M
b

Seconds

Vacation High

JVSTM AOM

Figure 6.12: The Vacation memory consumption for JVSTM with, and without
AOM, in the low and high contention workloads.

ferent approaches: (i) at the just-in-time compiler level, and (ii) through Java bytecode
instrumentation. Although the latter approach was more effective, I believe that using
a different integration solution at the virtual machine level could be even more efficient
and suppress some handicaps of the bytecode instrumentation.

111

CHAPTER 6. ADAPTIVE OBJECT METADATA

112

Chapter 7

Combining LICM and AOM

In the previous chapters I presented two runtime optimizations techniques (LICM and
AOM) to reduce the STM-induced overheads when accessing objects that are not under
contention. The LICM optimizes an STM to avoid useless STM barriers when access-
ing transaction local objects (corresponding to non-shared objects), whereas the AOM
optimizes a multi-versioning STM, such as JVSTM, to avoid further STM metadata for
non-contended objects. So, when an STM is enhanced with LICM it may avoid useless
STM barriers, but it still incurs in the overhead of the STM metadata added by some
STMs, such as the JVSTM. On the other hand, when an STM is enhanced with the
AOM it may avoid the overheads of additional STM metadata for non-contended ob-
jects, but it still incurs in the overhead of useless STM barriers for non-shared objects,
such as transaction local objects.

So, through the combination of both techniques: LICM and AOM, I expect to avoid
simultaneously the overheads that are mitigated by each technique individually. Note
that only with the combination of both techniques we can initialize the life cycle of a
transactional object in the compact layout of the AOM. Otherwise, even for transaction
local objects, when the instance constructor initializes the object’s proper fields, later,
when the transaction commits it would leave that object in the extended layout.

The work that I describe in this Chapter explores how the combination of two
optimization techniques can achieve a better performance than any of those techniques
individually. Since my proposals were developed and integrated in Deuce STM, I use
those optimizations techniques separately or together.

So, the LICM and the AOM techniques complement each other in a synergistic way,
substantially reducing the overheads of an STM in large-scale programs. As we shall see,

113

CHAPTER 7. COMBINING LICM AND AOM

my approach can solve one of the major bottlenecks that reduces the performance in
many realistic applications and simultaneously preserve the transparency of an STM
API, as shown with its implementation in Deuce.

In the following Section I show how the JVSTM enhanced with both LICM and
AOM (jvstm-aom-licm) achieves the best performance for all evaluated benchmarks
in comparison with any other solution of the JVSTM. After that, in Section 7.2, I
compare the performance of jvstm-aom-licm with other synchronizations approaches,
namely, lock-based synchronization, other STM algorithms (LSA and TL2) and manual
instrumentation with the JVSTM (jvstm-manual).

7.1 Enhancing the JVSTM with both LICM and AOM

In this section I evaluate the performance of the JVSTM in four different scenarios:
(1) the original unmodified implementation of the JVSTM (jvstm), (2) the JVSTM
enhanced with AOM (jvstm-aom), (3) the JVSTM enhanced with LICM (jvstm-licm),
and (4) the JVSTM enhanced with both techniques (jvstm-aom-licm).

In my experimental tests, I used the STMBench7 benchmark, the Vacation applica-
tion of the STAMP benchmark and the JWormBench.

7.1.1 Vacation

I present in Figure 7.1 the results obtained for the two workloads of the Vacation bench-
mark. I include the results of the TL2 for comparison with the JVSTM but I omit the
LSA, which presents similar performance to the TL2. These tests were performed on
a machine with 4 AMD OpteronT M 6168 processors, each one with 12 cores, resulting
in a total of 48 cores. The JVM version used was the 1.6.0_33-b03, running on Ubuntu
with Linux kernel version 2.6.32.

As we can see, in this benchmark LICM shows no benefits for the JVSTM, be-
cause the transaction local objects still incur in additional metadata that penalizes the
corresponding memory accesses (in the case of the TL2 and the LSA, there is no in-
place metadata associated with the transactional objects). Yet, these results show the
lightweight nature of LICM: Its penalty on the performance of the JVSTM (either
with or without AOM) is just below 10% in the worst case and is negligible in most
cases.

114

7.1. ENHANCING THE JVSTM WITH BOTH LICM AND AOM

jvstm jvstm-licm jvstm-aom jvstm-aom-licm

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

1 2 4 8 16 24 32 40 48

T
im

e
 (

m
s)

Threads

Vacation low

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

1 2 4 8 16 24 32 40 48

T
im

e
 (

m
s)

Threads

Vacation high

Figure 7.1: The results for Vacation with JVSTM, in the two workloads (low and
high contention).

On the other hand, the AOM improves the performance of the jvstm and the jvstm-
licm in both workloads of the Vacation: As shown in Figure 7.1, both jvstm-aom and
jvstm-aom-licm reduce the time taken to execute the benchmark to half of the time
taken by jvstm.

7.1.2 STMBench7

As shown in Chapter 5, the majority of the barriers elided by LICM in the STMBench7
access instances of classes related to the iterators of the java.util collections. So, it
is no surprise that using capture analysis has a great impact on the performance of the
STMBench7 with Deuce, as shown in Figure 7.2, where we can see that LICM improves
the performance of both enhanced STMs.1

Finally, when we combine the LICM with the AOM, we can observe that LICM
can take one step further and still improve the performance, getting an improvement of
up to 2.5-fold in performance of the jvstm-aom and of up to 4-fold in the performance
of the jvstm. In fact, the jvstm-aom-licm is the best synchronization approach in the
STMBench7, except for the write-dominated workload for which both optimization
techniques cannot improve the performance of the baseline JVSTM for more than 8
threads.

115

CHAPTER 7. COMBINING LICM AND AOM

0,00,51,01,52,02,53,03,54,04,5

jvstm jvstm-licm jvstm-aom jvstm-aom-licm

0,0

5,0

10,0

15,0

20,0

25,0

30,0

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

Read-dominated

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

Read-write

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

Write-dominated

Figure 7.2: The results for STMBench7 with JVSTM, in the three available work-
loads, without long traversal operations.

7.1.3 JWormBench

I ran this benchmark with the same configuration presented in Chapters 6 and 7: a
world with 1024 nodes and 48 worms with a head’s size varying between 2 and 16 nodes,
corresponding to a total number of nodes between 4 and 256 operated per transaction.
In comparison with the Vacation workloads, this configuration of the JWormBench
uses shorter transactions. In Vacation a transaction operates on up to 256 items, each
one performed on 90% or 60% (depending on the workload) of the total number of
records (configured with a value of 262144 records).

The results of Figure 7.3 confirm that either LICM or AOM can improve the per-
formance of the JVSTM and both together can achieve a better performance than any
of the previous single techniques. More precisely and for the read dominated workload

1 These tests were performed on a machine with two quad-core Intel Xeon CPUs E5520 with hyper-
threading, resulting in 8 cores and 16 hardware threads.

116

7.2. COMPARING JVSTM-AOM-LICM WITH OTHER APPROACHES

1 24

jvstm jvstm-licm jvstm-aom jvstm-aom-licm

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

450,0

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(×

1
0

3
)

o
p

s/
s

Threads

50% RO trxs, O(n2), N Reads, 1 Write

0

20

40

60

80

100

120

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(×

1
0

3
)

o
p

s/
s

Threads

50% RO trxs, O(n2), N Reads, N Writes

Figure 7.3: The JWormBench throughput for JVSTM for two different work-
loads. The workload on the right performs the same number of write accesses as
read accesses.

the AOM improves the performance of the JVSTM by 2.5-fold and the LICM improves
the performance by 3.5-fold. When we enhance the JVSTM with both techniques we
get an improvement of up to 4.2-fold in performance.

Yet, when the number of write operations increases too much, as in the case of
the O(n2), NReads, NWrites workload, the performance of the enhanced versions of
JVSTM degrades for a higher number of threads, due to the big overhead of its read-
write transactions with a high number of write accesses, which prevents any of the
JVSTM enhanced versions to scale for more than 16 threads.

7.2 Comparing jvstm-aom-licm with other approaches

In this section I compare the best JVSTM algorithm enhanced with both techniques
(jvstm-aom-licm), with LSA and TL2 enhanced with LICM. Both of these latter STMs
were available with the original Deuce framework distribution, whereas the JVSTM
was integrated in the enhanced version of Deuce STM (for more information about
this new version of Deuce STM, see Appendix C).

In these tests I used the same experimental environment including machines, bench-
marks and their configurations, as described in Section 7.1.

Given that the STMBench7 and the JWormBench also provide a medium/fine-
grained locking synchronization approach, I also evaluated these strategies in my ex-
perimental tests for comparison with the STM-based approaches.

117

CHAPTER 7. COMBINING LICM AND AOM

In Chapter 2, I presented the results obtained with a manually instrumented version
of the STMBench7 benchmark to show that it was possible to achieve better perfor-
mance with an STM, provided that the programmer collaborated in identifying which
objects needed to be instrumented by the STM. In fact, I established as a goal for my
work to be able to obtain comparable performance without requiring the intervention
of the programmer.

The results depicted in Figures 7.4, 7.5, and 7.6 compare the results of the enhanced
version of the JVSTM (jvstm-aom-licm) with the results of manually instrumenting the
benchmarks with the JVSTM (jvstm-manual). These results show that the goal was
achieved: Instrumenting automatically the entire program while using the LICM and
AOM allows us to obtain performance results comparable and even better than with
the manual instrumentation.

The better results of the automatic approach may be surprising at first, but they may
be explained by a series of factors: (1) the manual approach eliminates useless barriers,
much in the same way as LICM, but it does not benefit from the performance benefits
of the AOM approach; (2) the jvstm-aom-licm uses an object-level conflict detection
approach, whereas the jvstm-manual uses a word-level conflict detection; and (3) the
manual approach is applied statically at the class level, whereas the automatic approach
decides on a per-object basis whether to do the optimizations or not.

jvstm-manual jvstm-aom-licm tl2 tl2-licm

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

1 2 4 8 16 24 32 40 48

T
im

e
 (

m
s)

Threads

Vacation low

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

1 2 4 8 16 24 32 40 48

T
im

e
 (

m
s)

Threads

Vacation high

Figure 7.4: The results for Vacation with TL2 and JVSTM, in two workloads
(low and high contention).

For readability reasons I omitted the LSA in the results of Figure 7.4, which presents
similar performance to the TL2 with and without LICM.

In the case of the STMBench7, and for comparison with my optimized version of
the JVSTM, I include the lsa-licm in my analysis. Even though LSA performs better

118

7.2. COMPARING JVSTM-AOM-LICM WITH OTHER APPROACHES

than TL2 with capture analysis, its results are still far from the results obtained with
JVSTM, which is the most performant STM in the STMBench7, as shown in the re-
sults of Figure 7.5. In fact, jvstm-aom-licm gets better results than the medium-lock
synchronization approach for the read and read-write dominated workloads. In this
case, JVSTM benefits from its lock-free commit algorithm and from the lazy owner-
ship acquisition approach.

01
23
45
6

jvstm-manual jvstm-aom-licm medium-lock coarse-lock lsa lsa-licm

0,0

5,0

10,0

15,0

20,0

25,0

30,0

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

Read-dominated

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

Read-write

0,0

1,0

2,0

3,0

4,0

5,0

6,0

1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(x

1
0

3
)

o
p

s/
se

c

Threads

Write-dominated

Figure 7.5: The results for STMBench7 with LSA, JVSTM, and locks, in the
three available workloads, without long traversal operations.

For the JWormBench and as we observed in the results of Figure 7.3, the LICM
and AOM help to improve the performance of the JVSTM. Yet, this enhancement is
not enough to get the jvstm-aom-licm close to the performance of the lsa-licm, as shown
in the results of Figure 7.6. Unlike what happened for the STMBench7 and the Vaca-
tion, the LSA with capture analysis performs better than JVSTM in the JWormBench,
because these workloads have smaller transactions.

119

CHAPTER 7. COMBINING LICM AND AOM

1 24

jvstm-manual jvstm-aom-licm coarse-lock fine-lock lsa-licm

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(×

1
0

3
)

o
p

s/
s

Threads

50% RO trxs, O(n2), N Reads, 1 Write

0

50

100

150

200

250

300

350

400

1 2 4 8 16 24 32 40 48

T
h

ro
u

g
h

p
u

t
(×

1
0

3
)

o
p

s/
s

Threads

50% RO trxs, O(n2), N Reads, N Writes

Figure 7.6: The JWormBench throughput for LSA, JVSTM, and locks, for two
different workloads. The workload on the right performs the same number of
write accesses as read accesses.

7.3 Summary

In my tests I observed that both LICM and AOM are able to improve the performance
of an STM that is enhanced with either one of these techniques. Simultaneously, I
observed that individually none of these techniques can achieve the performance that
is achieved by an STM enhanced with the combination of both techniques. So, I claim
that each of the techniques can still optimize the remaining opportunities that were left
by the other technique in some benchmarks, because they aim to solve distinct kinds of
overheads. In the worst case, the combination of the techniques does not degrade the
benefits of the best one.

My approach can solve one of the major bottlenecks that reduces the performance
in many realistic applications and simultaneously preserve the transparency of an STM
API, as shown with its implementation in the Deuce STM framework. Although LICM
adds a minor overhead in memory space to all transactional locations and an extra
indirection for arrays, we still get a huge speedup in the Vacation and the STMBench7
benchmarks. In fact, for the first time in the case of STMBench7, I am able to get better
performance with an STM than with the medium-grain lock strategy.

Finally, my experimental results confirm my expectations that it is feasible to use
STMs for real-world–sized applications, provided that the STM is not adding barriers
to unnecessary memory locations. In fact, I believe that integrating the LICM and the

120

7.3. SUMMARY

AOM together in a managed runtime may further reduce the overhead of my approach
and provide a significant boost in the usage of STMs.

121

CHAPTER 7. COMBINING LICM AND AOM

122

Chapter 8

Conclusions

Programming languages evolved to simplify the development of parallel applications.
The most popular environments, such as Java and .Net still provide the same abstrac-
tions to solve a common problem in concurrent programming—shared memory synchro-
nization. Typically, these abstractions are intrinsic to the programming languages—
e.g. synchronized keyword in Java and lock in C#—and are implemented internally
through lock-based solutions, which may reduce parallelism when applied naively. To
bridge the gap of alternative abstractions for shared memory synchronization, several
frameworks have emerged to complement the APIs provided by managed runtime envi-
ronments. In this context, software transactional memory is one of the most promising
techniques used in the implementation of these frameworks.

Despite all the benefits of an STM, it still incurs in unacceptable overheads and, in
many cases, an STM is unable to efficiently solve the shared memory synchronization
problem, in comparison to a lock-based solution. In fact, an STM adds further indi-
rections and extra metadata to all memory locations managed by an application. And
these are some reasons why accessing a transactional location requires orders of mag-
nitude more machine cycles than a simple access to a conventional memory location.
So, as the memory heap managed by an application becomes larger, also the overheads
induced by the use of an STM become higher, because the space required by the STM
metadata is proportional to the number of transactional memory locations.

In my work I am particularly interested in the optimization of memory transac-
tions for large-scale programs where the side-effects resulting from the STM-induced
overheads are more harmful in the overall performance and memory space of these
applications. The idea behind my research was to find a solution that removes all the

123

CHAPTER 8. CONCLUSIONS

STM overheads for the majority of transactional locations and the cost of accessing
these locations should become similar to accessing non-transactional memory. So, if
the overheads of an STM become circumscribed to a small fraction of the overall mem-
ory managed by an application then these overheads may become negligible.

To tackle this problem first I studied what kind of overheads I could suppress
in transactional applications and then I explored different optimization techniques to
avoid these overheads. Finally, I confirmed the usefulness of my proposal for a diversity
of benchmarks, some of them well-known for being particularly challenging to STMs,
which reinforces the advantages of my techniques to make STMs as a valid alternative
to lock-based synchronization in large-scale programs.

Next, I present a detailed description of the contributions of this dissertation and
directions for future work.

8.1 Main Contributions

In this section I summarize the main contributions that result from the research work
that I describe in this dissertation: (1) JWormBench—A flexible benchmark for transac-
tional synchronization; (2) An heterogeneous API to optimize memory transactions;
(3) LICM—Lightweight Identification of Captured Memory; (4) AOM—Adaptive Ob-
ject Metadata; (5) Use of a fast access path for non-contended objects, and (6) Support
for in-place metadata.

JWormBench—A flexible benchmark for transactional synchronization

To clearly understand the overheads incurred by an STM and what kind of optimiza-
tions we could perform, we need applications that gather a couple of characteristics that
we just meet individually in different benchmarks. Namely, I was looking for a bench-
mark that provides simultaneously: (1) a correctness test (i.e. sanity check) that verifies
if the STM made a valid synchronization (e.g. provided by STMBench7 and LeeTM);
(2) different kinds of mathematical functions with different degrees of complexity to
stretch STMs along different axis (e.g. provided by WormBench); (3) long transac-
tions that stress the STM under intensive workloads (e.g. provided by STMBench7 and
Vacation); (4) fine-grained lock synchronization for comparison with an STM; (5) a
flexible API that allows the integration of different STM implementations (e.g. pro-
vided by STMBench7). Given the nice features of the WormBench, I decided to port

124

8.1. MAIN CONTRIBUTIONS

it to Java and further extend it with the missing mechanisms. JWormBench extends
the original benchmark in several ways and has some key differences: (1) it replaces
the STM integration approach based on macros, with a new extensible API that allows
easy integration with different STMs; (2) it implements the correctness test based on
the results accumulated on each thread’s private buffer; (3) it decouples the number of
threads from the environment specification allowing to keep the same contention along
different numbers of worker threads; (4) it allows to specify the proportion between
each kind of operation to produce workloads with different ratios of update operations.
These new parameters allowed me to evaluate STMs under new test conditions, which
were not available yet, and in this way I could find the most notorious bottlenecks that
contribute to the performance degradation of an STM.

A heterogeneous API to optimize memory transactions

Several other researchers proposed different kinds of heterogeneous APIs to help re-
duce the overheads of an STM. In common, all these solutions allow the programmer
to specify which blocks of code should not be instrumented by the STM compiler.
My proposal follows a different approach that allows programmers to specify their
intentions over memory locations, instead of on code blocks. So, my solution of a
heterogeneous API provides two distinct aspects: (1) it allows a fine-grained control of
instrumentation at the fields level; (2) for the first time in a managed environment, it
also includes arrays as locations that can avoid the STM instrumentation. Thanks to
these two features I could identify the most harmful overheads of an STM compiler in
some challenging benchmarks. I also observed the speedup achieved by an application
synchronized with an STM when we suppress these overheads, which came close to
the performance of the best fine-grained lock synchronization approach. These results
opened good perspectives about the use of STMs as an alternative to fine-grained lock
synchronization in large-scale programs.

LICM—Lightweight Identification of Captured Memory

The previous contributions allowed me to confirm that it was feasible to improve the
STM performance. Yet, there are some situations where we cannot predict in advance
if the STM barriers are required or not, and, thus, we cannot suppress those barriers
beforehand. So, my next step was to develop a runtime technique that was able to
accurately identify whether an object is not shared, such as for transaction local objects,

125

CHAPTER 8. CONCLUSIONS

and therefore avoid useless STM barriers. In this case, one ot the requirements of my
new approach was to keep the STM API transparent.

Although over-instrumentation was a well-known consequence of the transparent
synchronization, there were no automatic mechanisms that efficiently avoid these over-
heads. My proposal of a technique for lightweight identification of captured memory—
LICM—was the first automatic mechanism that made STM’s performance competitive
with the best fine-grained lock-based approaches. A key aspect of this approach is that
LICM keeps the STM API transparent and does not require any further intervention
from the programmer.

AOM—Adaptive Object Metadata

In my work I was particularly concerned with the optimization of an STM in read-
dominated scenarios, which I believe are most commonly found in real-world–sized
applications. In this context, even when an object is shared it may be frequently non-
contended and, thus, in these cases we may eliminate some of the STM overheads of
accessing non-contended objects. Regarding this problem, my idea was to eliminate the
extra STM metadata for non-contended objects. To that end, I explore the object model
provided by the managed runtime environments and instead of a unique layout, which
includes the STM metadata, I researched the effects of providing an adaptive layout that
swings objects back and forth between two different object layouts: a compact layout,
where no memory overheads exist, and an extended layout, used when the object may
be under contention. My approach not only improves the STM performance, but also
reduces the size of the memory heap managed by an application.

Fast access path for non-contended objects

Although LICM improved the performance of all baseline STMs, I noted that: (1) in
the STMBench7 it was still lagging behind of the best results achieved with the JVSTM
manually transactified; (2) in certain benchmarks, such as the Vacation, the LICM
does not achieve the same speedup for the JVSTM as we observe in other benchmarks,
such as the STMBench7. From these two observations I analysed the behaviour of the
JVSTM and I concluded that LICM cannot completely suppress the overheads of useless
STM barriers in JVSTM due to the additional metadata associated with all transactional
locations. So, by combining both LICM and AOM, I can simultaneously avoid the
additional tasks performed by STM barriers and also the further indirections induced

126

8.2. FUTURE RESEARCH

by the extra metadata, and thus provide a fast access path for non-contended objects.
This new approach enhances the JVSTM and for the first time makes the performance
of Deuce with JVSTM even better than a fine-grained lock approach in the STMBench7.
At the same time, this new solution achieves the same performance of the JVSTM
manually transactified, but within an automatic instrumentation engine such as Deuce
STM.

Support for in-place metadata

All mentioned techniques (multi-versioning, LICM, and AOM) require additional sup-
port from the execution environment to store metadata in-place, which was not avail-
able yet in any STM compiler. In my work I also bridge this gap and I researched
two different approaches to make a managed runtime environment include additional
metadata within memory locations. In my first implementation I extended the object
model of a Java runtime (in this case the Jikes RVM [Alpern et al. , 2005]) to natively
integrate the transactional metadata of a multi-versioning STM—JVSTM. Yet, this im-
plementation also required modifications to the just-in-time compiler, which affected
the optimization process and compromised the overall performance of the virtual ma-
chine. So, in my second implementation I followed a different approach and I inte-
grated a similar mechanism through a bytecode instrumentation engine instead of the
just-in-time compiler. For that purpose I modified a well-known STM engine for Java—
Deuce STM—and I integrated full support for in-place metadata. My implementation
is innovative in the following aspects: (1) it maintains the Deuce API; (2) it guarantees
backwards compatibility with existing applications and STMs for Deuce; and (3) it pro-
vides the ability to enhance any existing STM with additional filtering features without
requiring either its recompilation or any modification to its source-code.

8.2 Future Research

Even though the main goal of the work described in this dissertation is quite easy to
summarize—to optimize memory transactions—it is simultaneously quite ambitious,
especially when I compare my proposals with the best fine-grained locking solutions
in some of the more challenging benchmarks. Nevertheless, I believe that some of the
techniques that I proposed and developed could be further optimized and therefore
produce even better results.

Next, I present some of the areas which I believe would benefit from further work
in the future.

127

CHAPTER 8. CONCLUSIONS

Optimizing transactional read operations

In my work I assume that real-world–sized applications are dominated by read opera-
tions and the number of write operations is just a small fraction of the total number of
memory accesses performed during the application’s life cycle. So, the expectation that
I confirm in my work is that if we optimize read operations for the majority of transac-
tional locations then we will have a substantially speedup in the overall performance of
an application. Both techniques—LICM and AOM—allowed me to optimize read oper-
ations. In fact, for transactional local objects these techniques can completely remove
the overheads of an STM and reading a transaction local object has the same overhead
of reading a non-transactional one, plus the overhead of an additional identity compar-
ison. Yet, for non-local objects that are seldom written I could not completely suppress
the overheads of the STM. In this case, we are able to avoid the additional metadata,
but we must still keep track of the read-set. This means that for seldom written objects,
which take advantage of the compact layout provided by the AOM, we can directly
read the object fields but we must log this operation in the transaction’s read-set. So,
the remainder overhead of a read operation corresponds to the cost of maintaining the
read-set.

Again, assuming that the majority of the objects are seldom written, then we may
improve the application’s performance if we avoid the read-set log for compact objects.
Thus, we may achieve the same reading performance for seldom written objects, as for
transaction local objects. Yet, this kind of optimization requires additional validation
at commit phase to guarantee that a transaction that has read a compact object still got
a valid snapshot of memory. So, there is a tradeoff between the speedup obtain from
suppressing the read-set log and the overhead of extra validation at commit phase. The
implementation and possible adoption of this optimization could be a enhancement for
the AOM design and still requires future research.

Layout transitions policies

One of the problems regarding the application of the AOM to read-write workloads
is related to the overhead of the layout transitions. If an object is being extended and
reverted back repeatedly, then the benefits of accessing a compact object are overshad-
owed by the accumulated cost of the layout transitions. In fact, we should not revert
an object to the compact layout if it will be written soon. One possible approach is
to keep an object in the extended layout by a quiescent period before reverting it to

128

8.2. FUTURE RESEARCH

the compact layout. In my work I was specially focused on read-dominated workloads
and I did not observe any advantage of delaying the layout reversion. However, this
analysis was biased by the circumstances of the workloads and I believe that different
analysis can be made for other kinds of workload configurations. In that case, more
complex reversion policies may reduce the overheads of layout transitions and enhance
the benefits of the AOM.

Influence of the object’s size in the AOM overheads

Object layout transitions are the core primitive of the AOM. These operations encom-
pass the copy between the object fields and its versions. Obviously, the overhead of this
copy is directly dependent on the size of the object. However, all tested benchmarks
use domain classes with few fields and, thus, I did not expect a big overhead from the
layout transitions. Nevertheless, it would be interesting to evaluate the cost of layout
transitions according to each type of transactional object of a benchmark and, maybe
for certain classes there would be advantages in delaying the reversion, which probably
could prevent the object from being reverted. Concluding, the decision of immediately
reverting an object or delaying its reversion should be also assessed taking the size of
the object into account. Therefore, it is to be expected that in the future a more deep
study analyzes the influence of the object’s size in the AOM overheads and develops a
more efficient policy for the layout transitions.

Adaptive Memory Accessors

The AOM establishes further validation to all memory accesses. In this case it in-
cludes an identity comparison with the null value, to check whether an object is in the
compact or extended layout. Although my goal was to avoid the STM overheads for
non-contended objects, we still incur in the overhead of the branch resulting from the
AOM validation. The inclusion of adaptive memory accessors together with the adap-
tive layout could suppress the overhead of the AOM validation. As we swing between
layouts, we could also swing between the implementation of memory accessors. For
that purpose, and assuming that all object fields have private access, then all methods
that access instance fields should provide two implementations: one that accesses the
proper fields of the object and another that accesses the versioned history without pre-
viously checking if it exists or not. So, when an object changes its layout it must also
update its methods table to point to the correct implementations of the methods corre-
sponding to the layout of the object. This approach raises other problems regarding the

129

CHAPTER 8. CONCLUSIONS

built-in optimizations of the just-in-time compiler such as methods inlining and, thus,
it requires further research to its correct adoption in the AOM.

These topics are, by no means, an exhaustive list of all the research work that may
follow from what is described in this dissertation.

8.3 Concluding Remarks and Future Directions

In my work I start to show how a naive implementation of an STM with a transpar-
ent API is harmful for a large-scale program and after that, I also show how appro-
priate optimization techniques may effectively avoid the STM induced overheads and
enhance the overall performance of an application synchronized with an STM. In fact,
and for the first time, my approach allows me to make STM’s performance competi-
tive with the best fine-grained lock-based approaches in some of the more challenging
benchmarks. These results show that it is feasible to use STMs for real-world-sized
applications.

I developed my solution for the JVM with the support of a well-known STM in-
strumentation engine for Java—Deuce STM. However, I believe that the native support
of an STM at the managed runtime level, rather than at the bytecode instrumenta-
tion level, could suppress some limitations and avoid the workarounds of my solution,
such as for supporting arrays, and give further gains to this integration. For instance,
we could take advantage of the object layout and optimize the STM metadata stor-
age directly using the object’s header portion. Another facility available at the virtual
machine level is the direct access to the processor instructions set. In this case, we
could take advantage of Hardware Transactional Memory—HTM—that is available in
some architectures such as the Haswell from Intel, which provides the RTM (Restricted
Transactional Memory).

The RTM API includes specific instructions to mark the start and the end of a trans-
actional code region. All memory accesses within the transaction region—transactional
accesses—are maintained in the transaction’s private buffers: read-set and write-set, in-
stead of directly accessing memory locations. This approach complies with the idea of
a transparent API where all transactional accesses are implicit, instead of requiring an
explicit kind of instruction for accessing memory locations.

So, the RTM API is a low-level programming alternative to lock-based synchro-
nization mechanisms and thus, it may be used to synchronize critical sections with a

130

8.3. CONCLUDING REMARKS AND FUTURE DIRECTIONS

limited number of memory accesses that does not exceed the maximum size of the in-
ternal buffers. This approach is not intended for higher-level domain languages that
should encompass many memory accesses that easily lead to the overflow of the HTM
buffers. For instance, in the scope of a managed runtime environment, such as the JVM,
most of the code executed within a transaction region might not be part of the domain
logic, but part of the runtime services, such as the garbage collector. So, the number
of STM barriers performed within a transaction region can easily exceed the maximum
capacity of the transaction’s private buffers, which in turn aborts the transaction.

Some of the optimization techniques proposed in this dissertation avoid useless
STM barriers. To that end, we take advantage of the domain application knowledge
to suppress unnecessary STM barriers, such as for transaction local objects. To apply
this kind of optimizations to an HTM we need to have fine-grained control over which
memory accesses are transactified, or not. A transparent API such as the one provided
by Haswell does not allow us to use these techniques. For the previous reasons I do not
consider the current RTM API exploitable from the JVM point of view. Yet, I believe
that the hardware support for TM may contribute to further improve the performance
of an integrated TM solution in a managed runtime environment, such as the JVM. To
that end, HTM implementations should provide explicit instructions for transactional
memory accesses that let the compiler decide whether it should use, or not, an STM
barrier instead of a conventional memory access.

The development of large-scale applications is still requiring alternatives to lock-
based synchronization and an HTM by itself does not provide a valid option yet. How-
ever, managed runtime environments may provide an abstraction over an HTM and di-
rectly integrate the support of HTM to provide a more effective software transactional
mechanism, such as Deuce STM, but using hardware transactional barriers instead of
software-based barriers. The combination of this approach together with the optimiza-
tion techniques proposed in this dissertation may lead to an efficient use of an STM in
the JVM.

To finish my dissertation, I would like to reinforce my claim that managed runtime
environments need to provide an efficient alternative to lock-based synchronization,
which does not exist yet; I believe that my work, which defined new runtime optimiza-
tion techniques to STMs, is a significant step toward achieving this goal.

131

CHAPTER 8. CONCLUSIONS

132

Appendix A

JWormBench

The lack of realistic benchmarks is one of the factors that has been hampering the de-
velopment, testing, and acceptance of Software Transactional Memory (STM) systems.
Many of the developments made on STMs are evaluated on micro-benchmarks [Herlihy
et al. , 2006; Dice et al. , 2006; Riegel et al. , 2006; Felber et al. , 2008], which are fairly
criticized by some researchers (e.g. [Cascaval et al. , 2008]) that question the usefulness
of STMs, given their lack of demonstrable applicability to real-world problems.

Within the set of constraints presented by the majority of well-known benchmarks
for STMs there are two main aspects that make the evaluation and comparison of differ-
ent synchronizations approaches difficult: (1) the lack of configurability and flexibility
on the integration of new synchronization mechanisms, and (2) the limited variety of
operations adopted by a workload and shortage extensibility to other kinds of opera-
tions.

In this Appendix I describe a port that I made of the WormBench benchmark [Zyulk-
yarov et al. , 2008], from C# to Java. From the existing characteristics of WormBench
I was particularly interested in the simplicity of the domain model and the ability to
extend it with new kinds of operations among a wide range of functions with different
levels of complexity. This port extends the original benchmark in several ways, making
it more useful as a testbed for evaluating STMs [Carvalho & Cachopo, 2011]. More-
over, my port, which I called JWormBench1, has some key differences from the original
WormBench:

1Available at https://github.com/inesc-id-esw/jwormbench

133

APPENDIX A. JWORMBENCH

1. Unlike the WormBench, which follows an STM integration approach based on
macros, the JWormBench was designed to be easily extensible and to allow easy
integration with different STMs. For that purpose, the JWormBench has a new
solution architecture based on inversion of control, abstract factory, and factory
method design patterns [Gamma et al. , 1995];

2. The core engine of the JWormBench benchmark is deployed in a separate and
independent library, whose features can be extended with other libraries;

3. Unlike JWormBench, the WormBench distribution does not implement the cor-
rectness test (i.e. sanity check for the STM system) based on the results accumu-
lated on each thread’s private buffer;

4. In WormBench it is not easy to maintain the same contention scenario when
varying the number of threads, whereas in JWormBench the number of threads
is totally decoupled from the environment specification and we can maintain the
same conditions along different numbers of worker threads;

5. The operations generator tool in JWormBench allows us to specify the propor-
tion between each kind of operation, which is an essential feature to produce
workloads with different ratios of update operations.

In the following section I describe in more detail the WomBench benchmark, and
in Section A.2 I explain the main differences introduced in my port of that benchmark
to Java—JWormBench.

A.1 The WormBench benchmark

Given the nice characteristics of the WormBench, I decided to port it to Java and further
extend it to improve its usefulness. The WormBench benchmark was built to research
new workloads (creating, testing, and running) for TM systems’ evaluation. The main
data structures in the WormBench include worms formed by a body and a head, moving
in a shared world — matrix of nodes. Each node has an integer value and the worms’
group id that is over that node (worms belonging to different groups should not cross
through each other).

The total sum of the values of all world’s nodes is the world’s state. For read-only
workloads, the world’s state should remain unchanged by the execution of the bench-
mark.

134

A.1. THE WORMBENCH BENCHMARK

A worm object has the following properties: unique identifier, group id, speed, head’s
size, coordinates of the head, and coordinates of the body. A worm provides a move
method that receives a direction as parameter and moves the worm. Moving the worm
includes two tasks: (1) updating the coordinates of the body according to the new direc-
tion, and (2) updating the nodes below the body with the worm’s group id.

The worms perform worm operations on the nodes under the worms’s head. The
number of nodes under the head of the worm is equal to the square of its head’s size. In
Figure A.1, I show an example of a worm with a head’s size of 10 nodes, corresponding
to a total number of 100 nodes under the worm’s head. Given that a worm reads all the
nodes under its head for each worm operation and a transaction performs just one worm
operation, this means that the length of the transaction read-set grows quadratically
with the head’s size of the worm.

Figure A.1: Example of Worms layout in JWormBenchGui application.

In the WormBench application a worm object is associated with one thread and is
initialized with a stream of worm operations and movements that will be performed by
that thread during the execution of a workload. On each iteration, a worm performs the
following tasks: (1) updates the coordinates of the worm’s head; (2) reads the values of
the nodes under the worm’s head to a private buffer; (3) performs a worm operation on
the previously read private buffer; (4) copies the values of the private buffer to the nodes
under the worm’s head; (5) moves the worm (updates the coordinates of the body and
updates the nodes below the body). Each one of the previous tasks should be performed
atomically and their source-code is annotated with macros that delimit the beginning

135

APPENDIX A. JWORMBENCH

and the end of the atomic block. Then, each synchronization mechanism should trans-
late those macros to invocations to the corresponding synchronization API.

Operation read-set write-set complexity description

0 Sum head’s size2 0 O(n) returns the sum of the nodes’ values under
the worm’s head

1 Average head’s size2 0 O(n) returns the average of the nodes’ values un-
der the worm’s head

2 Median head’s size2 0 O(n2) returns the median value of the nodes un-
der the worm’s head

3 Minimum head’s size2 0 O(n) returns the minimum value of the nodes
under the worm’s head

4 Maximum head’s size2 0 O(n) returns the maximum value of the nodes
under the worm’s head

5 ReplaceMaxWithAverage head’s size2 1 O(n) replaces the maximum by the average of
the nodes’ values under the worm’s head

6 ReplaceMinWithAverage head’s size2 1 O(n) replaces the minimum by the average of
the nodes’ values under the worm’s head

7 ReplaceMedianWithAverage head’s size2 1 O(n2) replaces the median by the average of the
nodes’ values under the worm’s head

8 ReplaceMedianWithMax head’s size2 1 O(n2) replaces the median by the maximum
value of the nodes under the worm’s head

9 ReplaceMedianWithMin head’s size2 1 O(n2) replaces the median by the minimum value
of the nodes under the worm’s head

10 ReplaceMaxWithMin head’s size2 1 O(n) replaces the maximum by the minimum
value of the nodes under the worm’s head

11 Sort head’s size2 head’s size2 O(n2) sort the values of the nodes under worm’s
head and write them back to those nodes

12 Transpose head’s size2 head’s size2 O(n) transpose the values of the nodes under
worm’s head and write them back to those
nodes

Table A.1: 13 worm operations provided in the WormBench implementation. All
worm operations with complexity O(n2) could be implemented with lower com-
plexity, but it was my intention to provide operations computationally intensive.

The WormBench implementation provides 13 types of worm operations, which are
presented in Table A.1. These operations may be grouped in three categories:

• read-only — Sum, Average, Median, Minimum, and Maximum (from #0 to #4).
Each of these operations reads all the nodes under the worm’s head, correspond-
ing to head’s size2 nodes;

• n-reads-1-write — Replace<read-only>With<read-only> (from #5 to #10). Each
of these operations combines two of the read-only operations described in the
previous item: They use the value returned by the first operation to update the
node returned by the second. Each operation makes 2*head’s size2 reads and one
write, updating the world’s state.

136

A.2. JWORMBENCH: A PORT OF WORMBENCH TO JAVA

• n-reads-n-writes — Sort (#11) and Transpose (#12). When these operations are
properly synchronized with other concurrent worm operations, they preserve
the world’s state, i.e. the total value of all nodes in the world remains the same
before and after the execution of these operations.

The worm operation Sort and those based on the Median have complexity O(n2).
These algorithms could be implemented with lower complexity, but it was the author’s
intention to provide operations computationally intensive.

A.2 JWormBench: A port of WormBench to Java

One of the advantages of WormBench is the ability to create new configurations of
the world, worms, and worm operations, producing new workloads with complex con-
tention characteristics and different transaction durations and sizes, without modifying
its source-code. The JWormBench keeps this approach and adds two new features im-
portant for the research of new workloads and evaluation of STM scalability: (1) the
ability to specify the proportion between different kinds of operations, and (2) the
ability to set the number of worms independently of the number of threads.

Furthermore, the JWormBench provides a simple API, easy to integrate with any
STM implementation in Java. So, anyone may add a new synchronization mechanism
(based on STM or other), implementing the appropriate abstract types and providing
those implementations to JWormBench via a configuration module. In the same way
you can also extend JWomBench with new kinds of worm operations without modifying
the core JWormBench library.

In this section I will describe the main features of JWormBench that differ from the
WormBench implementation.

A.2.1 JWormBench applications

To increase the extensibility of JWormBench, I have designed it according to the in-
version of control (IoC) design pattern. Then, to run a workload on JWormBench we
must create an instance of the WormBench class and invoke the RunBenchmark method.

137

APPENDIX A. JWORMBENCH

But the WormBench class has dependencies to several abstract types, whose implementa-
tions in turn depend on other abstract types and so on. So, I used Guice as the depen-
dency injection framework2 to automatically resolve and inject dependencies based on a
configuration Guice module (a Java class that contributes configuration information —
bindings).

This new architecture promotes the implementation and easier integration of new
synchronization mechanisms without the need to interfere and modify the source code
of JWormBench. Also note that this modular design does not add any additional over-
head to the synchronization mechanism during the execution of the workload and
while it is collecting measurements. The additional levels of indirection imposed by
IoC and Guice will just delay the setup and will not affect the performance analysis.

We also provide the JWormBenchApp application that gives an easier way to pa-
rameterize and run a JWormBench’s workload using the default implementations of
the mentioned abstract types. By default JWormBenchApp uses a Guice module that
specifies the default implementations for all abstract types. Then, each synchroniza-
tion strategy must define its own Guice module overriding bindings that should provide
implementations with a distinct behavior. For instance, a Guice module to configure
Deuce STM just have to define the binding for IStepFactory type. On the other hand,
a Guice module for JVSTM must define IStepFactory and INodeFactory bindings as
shown in Listing A.1.

1 public class JvstmSyncModule extends AbstractModule {

2 @Override

3 protected void configure () {

4 bind(IStepFactory .class)

5 .to(JvstmStepFactory . class)

6 .in(Singleton . class);

7 bind(INodeFactory .class)

8 .to(JvstmBenchNodeFactory . class)

9 .in(Singleton . class);

10 }

11 }

Listing A.1: Guice module for JVSTM configuration

The JWormBenchApp is a Java console application that extends the JWormBench
framework with some built-in Guice modules for several synchronization strategies.
The running strategy can be specified by the command line argument -sync, which

2Available at: http://code.google.com/p/google-guice/

138

A.2. JWORMBENCH: A PORT OF WORMBENCH TO JAVA

receives one of the following values: none (default module that provides no synchro-
nization); deuce; jvstm; dstm; boost (a highly-concurrent transactional version of
a linearizable implementation of node [Herlihy & Koskinen, 2008]); fine-lock (a
fine-grained lock-based scheme).

If we run the JWormBenchApp application with a different -sync argument, it will
be interpreted as the name of a new module defining a new synchronization strategy.
So, to integrate a Java STM implementation with JWormBenchApp we just need to:
(1) implement the necessary factories, compile and include them in the Java classpath;
(2) define a new Guice module specifying bindings to those factories; (3) run JWorm-
BenchApp and give to the -sync argument the name of the Guice module.

The JWormBench is available on GitHub repository in 5 projects:

• JWormBench - the core framework class library.

• JWormBenchApp - a console application that parses command line arguments,
setup and runs a workload, based on a configuration module.

• JWormBench-unit.tests - unit tests that cover 90% of the source code of JWorm-
Bench class library;

• JWormBenchGui - A GUI application for layout evaluation and to move worms
on the world.

• WormBenchTools - Tools from the original WormBench application, written in
C#, able to generate configurations’ files of worms, world, and worm operations.

A.2.2 STM integration

One of the key differences from WormBench is the STM integration model of JWorm-
Bench. For that purpose, the JWormBench introduces the concept of step that is an ab-
straction of an iteration performed by the worm’s thread. A step includes the following
tasks: (1) performs a worm operation, (2) moves the worm, updating the coordinates of
the body and the head of the worm, and (3) updates the nodes under the body with the
worm’s reference.

Each synchronization strategy must provide a concrete implementation of the IStep-

Factory interface, whose instances are responsible for creating a collection of step ob-
jects, based on the information gathered from an iterable IStepSetup instance (the

139

APPENDIX A. JWORMBENCH

default implementation of IStepSetup loads step data from a configuration file). The
easiest way of providing an implementation of the IStepFactory interface is by ex-
tending the AbstractStepFactory class, according to the factory method design pat-
tern [Gamma et al. , 1995]. Listing A.2 presents DeuceStepFactory class as an imple-
mentation of the IStepFactory.

1 public class DeuceStepFactory extends AbstractStepFactory {

2 public DeuceStepFactory (...) {

3 super (stepSetup , opFac);

4 }

5 protected IStep factoryMethod (IOperation <?> op , ...) {

6 return new AbstractStep (direction , op) {

7 @Override

8 public Object performStep (IWorm worm) {

9 Object res = performAtomicOperation (worm);

10 performmAtomicMove (worm , direction);

11 return res;

12 }

13 @org.deuce. Atomic

14 Object performAtomicOperation (IWorm worm){

15 return op. performOperation (worm);

16 }

17 @org.deuce. Atomic

18 void performmAtomicMove (IWorm worm , ...) {

19 worm.move(direction);

20 worm. updateWorldUnderWorm ();

21 }

22 };

23 }

24 }

Listing A.2: Implementation of step factory for Deuce STM.

Depending on the STM implementation, it may be required to provide other im-
plementations of the JWormBench core entities, such as world, node, or coordinates,
among others. For instance, in JVSTM the fields accessed in the context of a transac-
tion must be of the VBox type. In the case of JWormBench this means that the value
field of node must be of the VBox type. So, the configuration of JVSTM for JWorm-
Bench must provide also an implementation of a node’s factory — an implementation
of INodeFactory interface.

140

A.2. JWORMBENCH: A PORT OF WORMBENCH TO JAVA

A.2.3 Correctness test

The JWormBench’s world is accessed by worms that can update the nodes’ values. If we
use a read-only workload and the nodes’ values are not modified by worms, then the
world’s state must be the same before and after workload execution.

On the other hand, for read-write workloads the total value can change, or not,
depending on the kind of update operations. For instance, if we just use operations of
n-reads-n-writes category as sort and transpose (see section A.1), the world’s state will be
preserved.

But for operations of n-reads-1-writes such as Replace<read-only>With<read-only>

the total value of the world nodes will change. To verify if the total value is correct
at the end of a workload execution, we must store in the thread’s private buffer the
difference between the new and the old value updated by a worm operation. At the
end, if we subtract the accumulated differences on each thread’s private buffer to the
total value of all nodes, the result must be equal to the initial sum of nodes’ values.

A.2.4 Contention level

Another of the limitations of WormBench is the difficulty of maintaining the same
contention level among different number of worker threads. This happens because in
WormBench the number of worms is equal to the number of threads. So, if we increase
the number of threads we will automatically have more worms in the world and more
collisions between them, affecting the contention level. In some scenarios you may
require a behavior like this, but there are other cases where you may want to keep the
same contention level among a different number of worker threads. The JWormBench
allows both scenarios.

In JWormBench the number of threads and the number of worms are independent.
The former is specified by an integer argument and the latter corresponds to the num-
ber of worms defined in the configuration file. So, by varying these parameters we can
obtain three situations: (1) if the number of worms is exactly the same as the number
of threads, then each worm will be assigned to one thread as in WormBench applica-
tion; (2) if the number of worms is greater than the number of threads, then worms
are distributed among threads; (3) if there are less worms than threads, then we have an
unsupported scenario and an exception is raised.

141

APPENDIX A. JWORMBENCH

142

Appendix B

Extending Jikes RVM’s just-in-time
compiler

I have implemented a prototype of JVSTM with AOM in the Jikes Research Virtual
Machine (Jikes RVM) [Alpern et al. , 2005]. In my work I have focused in the details of
the managed runtime object model to achieve the AOM approach and I show an STM
integration at the virtual machine level.

This Appendix describes the details of the modifications made to the Jikes RVM’s
just-in-time compiler.

In Section B.1 I start by giving an overview about the architecture of Jikes RVM’s
just-in-time compiler. Then, in Section B.2 I describe the required modifications to
wrap an atomic method call into a transaction control flow. Finally, in Section B.3 I
explain the changes to the implementation of getfield and putfield operations.

B.1 Architecture of Jikes RVM’s just-in-time compiler

The just-in-time compiler of Jikes RVM is organized in three main classes: the Temp-

lateCompilerFramework, the BaselineCompilerImpl and the Assembler. The
TemplateCompilerFramework is responsible for parsing a method’s bytecodes and
for generating the corresponding machine code. An instance of the TemplateCom-

pilerFramework delegates the conversion of each Java bytecode on emit_<opcode>

protected methods. These methods behave like hook methods overridden by the class

143

APPENDIX B. EXTENDING JIKES RVM’S JUST-IN-TIME COMPILER

BaselineCompilerImpl, which is responsible for the translation into a specific ma-
chine code. So, for each CPU architecture there is a concrete BaselineCompilerImpl

implementation. Finally, the BaselineCompilerImpl uses the Assembler class, which
implements the low-level assembler for IA32 processor architecture and contains func-
tionality for encoding specific instructions into an array of bytes.

Figure B.1: Architecture of the Jikes RVM’s just-in-time compiler

For the compilation of each method there is a corresponding instance of the Base-

lineCompilerImpl responsible for that job. This instance has a bcodes reference to
the bytecodes stream of the method being compiled and a genCode method responsible
for translating those bytecodes into machine code. In Listing B.1, I show the skeleton
of the genCode method of class TemplateCompilerFramework and how it delegates
on emit_<opcode> hook methods the responsibility of converting bytecodes into ma-
chine code.

B.2 Wrapping a method call in a transaction control
flow

I have extended the just-in-time compiler respecting the existing design for translating
bytecodes into machine code, as shown in Listing B.1. For each bytecode there is a cor-
responding case statement in genCode method, which delegates on emit_<opcode>

hook method the responsibility for translating that bytecode. Given that for each kind
of method invocation there is a specific bytecode invokeinterface, invokespecial,
invokestatic, or invokevirtual, then there is a corresponding hook method emit-

144

B.2. WRAPPING A METHOD CALL IN A TRANSACTION CONTROL FLOW

1 protected final MachineCode genCode () {

2 emit_prologue ();

3 while (bcodes . hasMoreBytecodes ()) { // Main code generation loop

4 starting_bytecode ();

5 int code = bcodes . nextInstruction ();

6 switch (code) {

7 case JBC_nop : break ;

8 case JBC_iaload : emit_iaload (); break ;

9 case JBC_laload : emit_laload (); break ;

10 ...

11 case JBC_invokestatic : ... emit_invokestatic (); ... break ;

12 ...

13 }

14 ending_bytecode ();

15 }

16 return asm. finalizeMachineCode (bytecodeMap);

17 }

Listing B.1: genCode() method from TemplateCompilerFramework

_invokeinterface, emit_invokespecial, emit_invokestatic, or emit_invo-

kevirtual.1

I followed a similar approach to wrap a method call in a transaction control flow and
I added in TemplateCompilerFramework two hook methods: emitSTM_begin and
emitSTM_tryCommit. Before emitting code for the method’s invocation, I emit code
to start a transaction—emitSTM_begin—and at the end I emit code that tries to commit
the transaction and in case of failure restarts the transaction—emitSTM_tryCommit. To
restart the execution at the point where the transaction was created, then the emit-

STM_begin method must return the address of the first instruction it emits. This ad-
dress is used by emitSTM_tryCommit to emit a jmp to the beginning of the wrapping,
in case of transaction’s failure. If the emitSTM_begin returns a zero value, it means
that the calling method is not transactional and no transaction has been created, so I
should not call the emitSTM_tryCommit.

The Listing B.2 shows how the just-in-time compiler uses the emitSTM_begin and
emitSTM_tryCommit to instrument a method call. This example just depicts a static
invocation but I follow the same approach for other kinds of method calls.

The emitSTM_begin and emitSTM_tryCommit methods are abstract and should be
overridden for each BaselineCompilerImpl class implementation, according to each

1 For each kind of invocation there are two hook methods in format emit_<resolved|unresol-

ved><opcode>. Yet, the way a method is wrapped into a transaction is independent of its resolution.

145

APPENDIX B. EXTENDING JIKES RVM’S JUST-IN-TIME COMPILER

1 case JBC_invokestatic : {

2 MethodReference mRef = bcodes . getMethodReference ();

3 RVMMethod callingMethod = mRef. resolve ();

4 // emit a call to Transaction .begin

5 int methodInitImm = emitSTM_begin (callingMethod);

6 // Default translation of invokestatic

7 emit_invokestatic (mRef);

8 if(methodInitImm > 0)

9 // emit a call to Transaction . tryCommit

10 emitSTM_tryCommit (callingMethod , methodInitImm);

11 break;

12 }

Listing B.2: genCode(): emitting code to wrap a method call into a transaction.

CPU architecture. The implementation of these methods is architecture dependent,
on how RVMThread context is accessed and how is created a backup for the method’s
arguments. In my solution I have just implemented these methods for the IA32 archi-
tecture. These methods emit code to invoke the corresponding begin and tryCommit

methods of the class Transaction, which receive a RVMThread object by argument in
both cases. So, the emitSTM_begin method should perform the following tasks:

1. Checks if the calling method is annotated with Atomic and if not, there is nothing
more to do and it returns;

2. If the calling method is atomic then it emits code for invoking begin static
method from Transaction class. This is the point to where execution should
jump in case of failure on tryCommit;

3. Creates a backup of the method’s arguments (explained later);

4. At the end it will return the offset for the instruction corresponding to the invo-
cation of the method begin—variable methodInitImm of the Listing B.3.

According to the Jikes RVM just-in-time compiler the method caller is responsible
for pushing arguments on the stack and the callee for cleaning those arguments and
push the method result, if exists. This means that we must preserve a backup of the
method’s arguments in the case we have to repeat the invocation of the atomic method.
Listing B.4 shows the code responsible for emitting the creation of a backup in stack
for the callee method’s arguments and Listing B.5 presents the corresponding IA32
code emitted by the previous code. Figure B.2 depicts three snapshots of the stack

146

B.3. CHANGING THE GETFIELD AND PUTFIELD DEFAULT BEHAVIORS

1 protected int emitSTM_begin (RVMMethod cM){

2 int methodInitImm = 0;

3 // ---------------------- 1st task -----------------

4 if(fullyBootedVM && cM. isAnnotationPresent (Atomic . class)){

5 // --------------------- 2nd task -----------------

6 methodInitImm = asm. getMachineCodeIndex ();

7 asm. emitPUSH_RegDisp (ESI , activeThread_field_offset);

8 emit_resolved_invokestatic_without_stm (stmTransactionBegin);

9 // --------------------- 3rd task -----------------

10 // Creates a backup for method ’s arguments

11 ...

12 }

13 // ---------------------- 4th action -----------------

14 return methodInitImm ;

15 }

Listing B.3: emitSTM_begin()

frame corresponding to its state before the execution of the code shown in Listing B.5,
after the execution of the instructions I1.1 to I1.3 and at the end of the execution of the
arguments duplication.

The emitSTM_tryCommit method emits code to call the tryCommit method of the
class Transaction and evaluate its returned value. In case of transaction’s failure then
it will jump to the methodInitImm offset instruction. Otherwise the last thing it has
to do is to emit code to clean argument’s backup from stack. Due to the complexity of
emitting code for the different branches of the control flow, I have chosen to just present
a sketch of the resulting IA32 code from the execution of the emitSTM_tryCommit in
Listing B.6.

B.3 Changing the getfield and putfield default be-
haviors

When the genCode method of the class TemplateCompilerFramekork is processing
the putfield and getfield bytecodes, we must check if the declaring class of the tar-
geting field is transactional and in that case we have to emit adequate machine code. For
that purpose we add two new hook methods: emit_transactional_getfield and
emit_transactional_putfield and change the case statements for corresponding

147

APPENDIX B. EXTENDING JIKES RVM’S JUST-IN-TIME COMPILER

1 // ---------- 3rd task ----------
2 int nrParams =
3 callingMethod.getParameterWords ()
4 + (callingMethod.isStatic () ? 0 : 1);
5 Offset nrArgsWords = NO_SLOT.plus (
6 WORDSIZE * nrParams);
7 asm.emitSUB_Reg_Imm (SP , WORDSIZE);
8 for(int i = nrParams ; i > 0; i--){
9 asm.emitMOV_Reg_RegDisp (

10 ECX , SP , nrArgsWords);
11 asm.emitMOV_RegDisp_Reg (
12 SP , NO_SLOT , ECX);
13 asm.emitSUB_Reg_Imm (SP , WORDSIZE);
14 }
15 asm.emitADD_Reg_Imm (SP , WORDSIZE);

Listing B.4: Emit code for duplicat-
ing method’s arguments.

1 ; Adjust stack pointer down one word
2 I0: sub esp , WORDSIZE
3 ;Save argument at ECX
4 I1.1: mov ecx , [esp
5 +(nrArgsWords * WORDSIZE)]
6 ;Copy argument to nrArgsWords
7 ;slots forward
8 I1.2: mov [esp], ecx
9 ; Adjust stack pointer down one word

10 I1.3: sub esp , WORDSIZE
11 ; Repeats three last operations
12 ;for the number of method ’s arguments
13 I...:
14 ; Adjust stack pointer up one word
15 I.nrArgs : add esp , WORDSIZE

Listing B.5: Machine code for du-
plicating method’s arguments.

Figure B.2: Stack frame before, during and after arguments duplication.

1 ; Invokes the tryCommit method of the class Transaction passing
2 ;the current RVMThread object as argument
3 push [esi + fieldActiveThreadOfRvmProcessor.peekResolvedField () .getOffset ()]
4 call stmTransactionTryCommit
5 ; Checks if the tryCommit has succeed comparing the method ’s result
6 ;with Transaction.Status.SUCCEED.
7 cmp [esp], Transaction.Status.SUCCEED.ordinal ()
8 jeq done
9 repeat :

10 add esp , WORDSIZE ;Pop stmTransactionCommit result
11 add esp , nrReturnWords ;Pop the result of the atomic method call
12 jmp methodInitImm
13 done:
14 add esp , WORDSIZE ;Pop stmTransactionCommit result
15 add esp , nrArgsWords * WORDSIZE ;clean argument ’s backup

Listing B.6: Machine code for trying to commit a transaction.

bytecodes, as shown in Listing B.7. The emit_getfield and emit_putfield2 pre-
2There are two and not one emit method for each getfield and putfield operations, depending

on the resolution, or not, of the field’s declaring class. But this fact does not interfere in the conditions

148

B.3. CHANGING THE GETFIELD AND PUTFIELD DEFAULT BEHAVIORS

serve the default behavior of corresponding putfield and getfield bytecodes, whereas
the emit_transactional_getfield and emit_transactional_putfield call the
STM to get, or store, values from, or into, the transaction’s context.

1 ...

2 case JBC_getfield :{

3 FieldReference fieldRef = bcodes . getFieldReference ();

4 RVMField field = fieldRef . resolve ();

5 if(fullyBootedVM){

6 RVMClass declaringClass = field. getDeclaringClass ();

7 if(declaringClass . isAnnotationPresent (Transactional . class))

8 emit_transactional_getfield (fieldRef);

9 }

10 else {...; emit_getfield (fieldRef); // default behavior

11 }

12 break;

13 }

14 case JBC_putfield : {

15 FieldReference fieldRef = bcodes . getFieldReference ();

16 RVMField field = fieldRef . resolve ();

17 if(fullyBootedVM && ! method . isObjectInitializer ()){

18 RVMClass declaringClass = field. getDeclaringClass ();

19 if(declaringClass . isAnnotationPresent (Transactional . class))

20 emit_transactional_putfield (fieldRef);

21 }

22 else {{...; emit_putfield (fieldRef); // default behavior

23 }

24 break;

25 }

26 ...

Listing B.7: genCode() method from TemplateCompilerFramework

Yet, there is one scenario for which the getfield operation does not need STM
for targeting a transactional object: when that object is on its compact layout and the
getfield is performed out of the scope of any transaction. Both conditions must
be met to read a transactional object in the standard way. In that case the getfield

operation just have to read a slot from the object’s storage.

On the other hand, if an object is accessed in the scope of a transaction and it is
already in its extended layout we must read its fields values through the STM. If an
object is in the compact layout, we also must call STM to record that operation in the

for generating a transactional getfield/putfield and for simplification I keep it out of this discussion.

149

APPENDIX B. EXTENDING JIKES RVM’S JUST-IN-TIME COMPILER

transaction’s context. So, independently of the object layout, every time we read an
object from inside a transaction we must do it via STM.

150

Appendix C

Extending Deuce STM

Some STMs and optimization techniques require a specific object model distinct from
the one provided by a managed runtime environment. Yet, the original Deuce STM
just provides extensibility in terms of the specification of the STM algorithm, but it
does not allow any enhancement to the Java object layout.

In Deuce, the entry point of the instrumentation engine is defined by the class
Agent, which implements the interface java.lang.instrument.ClassFileTrans-

former. This class is responsible for instrumenting all the classes from a jar archive,
or from the class loader, depending on whether the instrumentation engine is per-
formed in offline mode (running the main method), or by a Java agent (running the
premain method), as depicted in the code of the Listing C.1. In both cases, it is in-
voked the core method transform, which receives a byte[] with the bytecodes of
the original class definition and returns a new List<ClassByteCode> with the byte-
codes of the resulting class from the Deuce transactification and other auxiliary classes
added by the transformation. So, the standard Deuce transformation is defined by
the class org.deuce.transform.asm.ClassTransformer, which is invoked by the
Agent class.

In my work, I added to the Deuce framework a new infrastructure that allows the
specification and execution of enhancers, which are additional transformations to the
standard Deuce instrumentation.1 These enhancers are instances of classes implement-
ing the interface ClassEnhancer presented in Listing C.2. This interface specifies a
unique method with the same signature of the core transform method of the class
Agent, which is responsible to perform the standard Deuce transactification. But now,

151

APPENDIX C. EXTENDING DEUCE STM

1 public class Agent implements ClassFileTransformer {

3 public static void main(String [] args) {

4 ...

5 for (JarEntry nextJarEntry : . . .) {

6 List < ClassByteCode > transformed = transform (...);

7 ...

8 }

9 }

11 public static void premain (... , Instrumentation inst) {

12 inst. addTransformer (new Agent ());

13 }

15 @Overrides

16 public byte [] transform (... , byte [] bytecodes){

17 List < ClassByteCode > transformed = transform (...);

18 for(ClassByteCode cb : transformed){

19 loadClass (cb. getClassName (), cb. getBytecode ());

20 }

21 ...

22 }

24 List < ClassByteCode > transform (... , byte [] bytecodes){

25 ClassTransformer cv = new ClassTransformer (...);

26 bytecodes = cv.visit(bytecodes);

27 ...

28 }

29 }

Listing C.1: Skeleton of the class Agent, with two different entry points: main

and premain, depending on whether the instrumentation is performed in offline
mode or by a Java agent.

I will allow the end user programmer to specify further transformations beyond the
standard Deuce transformation.

The enhancers may be added to the Deuce engine through the system properties
org.deuce.transform.pre and org.deuce.transform.post, depending on whether
they should be executed before or after the standard Deuce instrumentation. Moreover,
the enhancers may be combined in a chain of transformations, when more than one en-

1This adaptation of Deuce is available at https://github.com/inesc-id-esw/deucestm/

152

1 public interface ClassEnhancer {

3 public List < ClassByteCode > transform (

4 boolean offline ,

5 String className ,

6 byte [] classfileBuffer);

8 }

Listing C.2: ClassEnhancer interface.

hancer is specified in the same pre or post property. For instance, in the case of JVSTM,
we need to combine two post enhancers that transform the definition of transactional
classes and arrays, and we also need to include a pre enhancer, which makes a required
transformation to support static fields. So, for the JVSTM we need to run Deuce with
the configuration presented in Listing C.3.

1 org.deuce. transform .pre=

2 org.deuce. transform .jvstm. EnhanceStaticFields

3 org.deuce. transform .post=

4 org.deuce. transform .jvstm. EnhanceTransactional ,

5 org.deuce. transform .jvstm. EnhanceVBoxArrays

Listing C.3: Required enhancers to run Deuce with the JVSTM.

153

APPENDIX C. EXTENDING DEUCE STM

154

Bibliography

Adl-Tabatabai, Ali-Reza, Lewis, Brian T., Menon, Vijay, Murphy, Brian R., Saha,
Bratin, & Shpeisman, Tatiana. 2006. Compiler and runtime support for efficient
software transactional memory. SIGPLAN Not., 41(June), 26–37.

Afek, Yehuda, Korland, Guy, & Zilberstein, Arie. 2011. Lowering STM overhead
with static analysis. Pages 31–45 of: Proceedings of the 23rd international conference on
Languages and compilers for parallel computing. LCPC’10. Houston, TX: Springer-
Verlag.

Agrawal, Kunal, Leiserson, Charles E., & Sukha, Jim. 2006. Memory models for open-
nested transactions. Pages 70–81 of: Proceedings of the 2006 workshop on Memory system
performance and correctness. MSPC ’06. San Jose, California: ACM.

Alpern, B., Augart, S., Blackburn, S. M., Butrico, M., Cocchi, A., Cheng, P., Dolby,
J., Fink, S., Grove, D., Hind, M., McKinley, K. S., Mergen, M., Moss, J. E. B.,
Ngo, T., & Sarkar, V. 2005. The Jikes research virtual machine project: building an
open-source research community. IBM Syst. J., 44(January), 399–417.

Ansari, Mohammad, Kotselidis, Christos, Jarvis, Kim, Luján, Mikel, Kirkham, Chris,
& Watson, Ian. 2008. Lee-TM: A Non-trivial Benchmark for Transactional Memory.
In: ICA3PP ’08: Proceedings of the 7th International Conference on Algorithms and
Architectures for Parallel Processing. LNCS, Springer.

Beckman, Nels E., Kim, Yoon Phil, Stork, Sven, & Aldrich, Jonathan. 2009. Reducing
STM overhead with access permissions. Pages 2:1–2:10 of: International Workshop
on Aliasing, Confinement and Ownership in Object-Oriented Programming. Genova,
Italy: ACM.

Binder, Walter, Hulaas, Jarle, & Moret, Philippe. 2007. Advanced Java bytecode in-
strumentation. Pages 135–144 of: Proceedings of the 5th international symposium on
Principles and practice of programming in Java. PPPJ ’07. Lisboa, Portugal: ACM.

155

BIBLIOGRAPHY

Cachopo, João, & Rito-Silva, António. 2006. Versioned boxes as the basis for memory
transactions. Sci. Comput. Program., 63(December), 172–185.

Cachopo, João. 2007. Development of Rich Domain Models with Atomic Actions. Ph.D.
thesis, Instituto Superior Técnico, Technical University of Lisbon.

Cao Minh, Chi, Chung, JaeWoong, Kozyrakis, Christos, & Olukotun, Kunle. 2008
(September). STAMP: Stanford Transactional Applications for Multi-Processing. In:
IISWC ’08: Proceedings of The IEEE International Symposium on Workload Character-
ization.

Carvalho, Fernando Miguel, & Cachopo, João. 2012 (January). Adaptive object meta-
data to reduce the overheads of a multi-versioning STM. In: Electronic Proceedings of
the workshop on Programmability Issues for Multi-Core Computers. MULTIPROG.

Carvalho, Fernando Miguel, & Cachopo, João. 2013a. Lightweight identification
of captured memory for Software Transactional Memory. In: Proceedings of the
13th international conference on Algorithms and architectures for parallel processing.
ICA3PP’13. Sorrento, Italy: Springer-Verlag.

Carvalho, Fernando Miguel, & Cachopo, João. 2013b. Runtime elision of transac-
tional barriers for captured memory. Pages 303–304 of: Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of parallel programming. PPoPP ’13.
Shenzhen, China: ACM.

Carvalho, Fernando Miguel, & Cachopo, João. 2011. STM with transparent API con-
sidered harmful. Pages 326–337 of: Proceedings of the 11th international conference
on Algorithms and architectures for parallel processing - Volume Part I. ICA3PP’11.
Melbourne, Australia: Springer-Verlag.

Cascaval, Calin, Blundell, Colin, Michael, Maged, Cain, Harold W., Wu, Peng, Chiras,
Stefanie, & Chatterjee, Siddhartha. 2008. Software Transactional Memory: Why Is
It Only a Research Toy? Queue, 6(5), 46–58.

Chakrabarti, Dhruva R. 2010a. New abstractions for effective performance analysis of
STM programs. SIGPLAN Not., 45(January), 333–334.

Chakrabarti, Dhruva R. 2010b. New abstractions for effective performance analysis of
STM programs. Pages 333–334 of: Proceedings of the 15th ACM SIGPLAN symposium
on Principles and practice of parallel programming. PPoPP ’10. Bangalore, India: ACM.

Cormen, Thomas H., Stein, Clifford, Rivest, Ronald L., & Leiserson, Charles E. 2001.
Introduction to Algorithms. 2nd edn. McGraw-Hill Higher Education.

156

BIBLIOGRAPHY

Dalessandro, Luke, Spear, Michael F., & Scott, Michael L. 2010. NOrec: streamlining
STM by abolishing ownership records. Pages 67–78 of: Proceedings of the 15th ACM
SIGPLAN symposium on Principles and practice of parallel programming. PPoPP ’10.
Bangalore, India: ACM.

Dias, Ricardo J., Vale, Tiago M., & Lourenço, João M. 2012. Efficient support for
in-place metadata in transactional memory. Pages 589–600 of: Proceedings of the 18th
international conference on Parallel Processing. Euro-Par’12. Rhodes Island, Greece:
Springer-Verlag.

Dice, Dave, & Shavit, Nir. 2006. What really makes transactions faster? In: Proc. of the
1st TRANSACT 2006 workshop. Transact, Ottawa, Canada, 06.11.2006.

Dice, Dave, Shalev, Ori, & Shavit, Nir. 2006. Transactional locking II. Pages 194–208 of:
Proceedings of the 20th international conference on Distributed Computing. DISC’06.
Stockholm, Sweden: Springer-Verlag.

Dragojevic, Aleksandar, Guerraoui, Rachid, & Kapalka, Michal. 2008. Dividing Trans-
actional Memories by Zero. In: TRANSACT ’08: 3rd Workshop on Transactional
Computing. Transact, Salt Lake City, Utah, USA, 23.02.2008.

Dragojevic, Aleksandar, Ni, Yang, & Adl-Tabatabai, Ali-Reza. 2009. Optimizing trans-
actions for captured memory. Pages 214–222 of: Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and architectures. SPAA ’09. Calgary, AB,
Canada: ACM.

Dragojević, Aleksandar, Guerraoui, Rachid, & Kapalka, Michal. 2009. Stretching trans-
actional memory. Pages 155–165 of: Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation. PLDI ’09. Dublin, Ireland:
ACM.

Eddon, Guy, & Herlihy, Maurice. 2007. Language support and compiler optimizations
for STM and transactional boosting. Pages 209–224 of: Proceedings of the 4th inter-
national conference on Distributed computing and internet technology. ICDCIT’07.
Bangalore, India: Springer-Verlag.

Felber, Pascal, Fetzer, Christof, & Riegel, Torvald. 2008. Dynamic performance tuning
of word-based software transactional memory. Pages 237–246 of: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel programming.
PPoPP ’08. Salt Lake City, UT, USA: ACM.

157

BIBLIOGRAPHY

Fernandes, Sérgio Miguel, & Cachopo, João. 2011. Lock-free and scalable multi-version
software transactional memory. Pages 179–188 of: Proceedings of the 16th ACM sym-
posium on Principles and practice of parallel programming. PPoPP ’11. San Antonio,
TX, USA: ACM.

Fowler, M. 2003. Patterns of Enterprise Application Architecture. A Martin Fowler
signature book. Addison-Wesley.

Fraser, Keir. 2003. Practical lock freedom. Ph.D. thesis, University of Cambridge, Com-
puter Laboratory.

Gamma, Erich, Helm, Richard, Johnson, Ralph, & Vlissides, John. 1995. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley.

Guerraoui, Rachid, & Kapalka, Michal. 2008. On the correctness of transactional mem-
ory. Pages 175–184 of: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming. PPoPP ’08. Salt Lake City, UT, USA: ACM.

Guerraoui, Rachid, Kapalka, Michal, & Vitek, Jan. 2007. STMBench7: a benchmark
for software transactional memory. SIGOPS Oper. Syst. Rev., 41(March), 315–324.

Harmanci, Derin, Felber, Pascal, Gramoli, Vincent, & Fetzer, Christof. 2009. TMunit:
Testing Transactional Memories. In: 4th ACM SIGPLAN Workshop on Transactional
Computing. Transact.

Harris, Tim, & Fraser, Keir. 2003. Language support for lightweight transactions.
Pages 388–402 of: Proceedings of the 18th annual ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and applications. OOPSLA ’03. Anaheim,
California, USA: ACM.

Harris, Tim, Marlow, Simon, Peyton-Jones, Simon, & Herlihy, Maurice. 2005. Com-
posable memory transactions. Pages 48–60 of: Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming. PPoPP ’05. Chicago,
IL, USA: ACM.

Harris, Tim, Plesko, Mark, Shinnar, Avraham, & Tarditi, David. 2006. Optimizing
memory transactions. Pages 14–25 of: Proceedings of the 2006 ACM SIGPLAN con-
ference on Programming language design and implementation. PLDI ’06. Ottawa,
Ontario, Canada: ACM.

Harris, Tim, Larus, James, & Rajwar, Ravi. 2010. Transactional Memory, 2nd Edition.
2nd edn. Morgan and Claypool Publishers.

158

BIBLIOGRAPHY

Herlihy, Maurice, & Koskinen, Eric. 2008. Transactional boosting: a methodology
for highly-concurrent transactional objects. Pages 207–216 of: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of parallel programming. PPoPP
’08. Salt Lake City, UT, USA: ACM.

Herlihy, Maurice, & Lev, Yossi. 2009. tm_db: A Generic Debugging Library for Trans-
actional Programs. Pages 136–145 of: Proceedings of the 2009 18th International Con-
ference on Parallel Architectures and Compilation Techniques. Washington, DC, USA:
IEEE Computer Society.

Herlihy, Maurice, & Moss, J. Eliot B. 1993. Transactional memory: architectural sup-
port for lock-free data structures. Pages 289–300 of: Proceedings of the 20th annual
international symposium on computer architecture. ISCA ’93. San Diego, California,
United States: ACM.

Herlihy, Maurice, & Shavit, Nir. 2008. The Art of Multiprocessor Programming. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Herlihy, Maurice, Luchangco, Victor, & Moir, Mark. 2006. A flexible framework for
implementing software transactional memory. SIGPLAN Not., 41(October), 253–
262.

Herlihy, Maurice P., & Wing, Jeannette M. 1990. Linearizability: A Correctness Con-
dition for Concurrent Objects. ACM Transactions on Programming Languages and
Systems, 12(3), 463–492.

Kestor, Gokcen, Gioiosa, Roberto, Harris, Tim, Unsal, Osman S., Cristal, Adrian,
Hur, Ibrahim, & Valero, Mateo. 2011. STM2: A Parallel STM for High Performance
Simultaneous Multithreading Systems. Pages 221–231 of: Proceedings of the 2011 Inter-
national Conference on Parallel Architectures and Compilation Techniques. PACT ’11.
Washington, DC, USA: IEEE Computer Society.

Knight, Tom. 1986. An architecture for mostly functional languages. Pages 105–112
of: Proceedings of the 1986 ACM conference on LISP and functional programming. LFP
’86. Cambridge, Massachusetts, United States: ACM.

Korland, Guy. 2010. Deuce STM. https://sites.google.com/site/deucestm/.

Korland, Guy, Shavit, Nir, & Felber, Pascal. 2010 (March). Noninvasive concurrency
with Java STM. In: Electronic Proceedings of the workshop on Programmability Issues
for Multi-Core Computers. MULTIPROG.

159

BIBLIOGRAPHY

Lindholm, Tim, & Yellin, Frank. 1999. Java Virtual Machine Specification. 2nd edn.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Lourenço, João, Dias, Ricardo, Luís, João, Rebelo, Miguel, & Pessanha, Vasco. 2009.
Understanding the behavior of transactional memory applications. Pages 3:1–3:9 of:
Proceedings of the 7th Workshop on Parallel and Distributed Systems: Testing, Analysis,
and Debugging. PADTAD ’09. Chicago, Illinois: ACM.

Mannarswamy, Sandya, Chakrabarti, Dhruva R., Rajan, Kaushik, & Saraswati, Sujoy.
2010a. Compiler aided selective lock assignment for improving the performance of
software transactional memory. SIGPLAN Not., 45(January), 37–46.

Mannarswamy, Sandya, Chakrabarti, Dhruva R., Rajan, Kaushik, & Saraswati, Sujoy.
2010b. Compiler aided selective lock assignment for improving the performance of
software transactional memory. Pages 37–46 of: Proceedings of the 15th ACM SIG-
PLAN symposium on Principles and practice of parallel programming. PPoPP ’10. Ban-
galore, India: ACM.

Manson, Jeremy, Pugh, William, & Adve, Sarita V. 2005. The Java memory model.
Pages 378–391 of: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages. POPL ’05. Long Beach, California, USA: ACM.

Marathe, Virendra J., Scherer, William N., & Scott, Michael L. 2004. Design tradeoffs
in modern software transactional memory systems. Pages 1–7 of: Proceedings of the
7th workshop on Workshop on languages, compilers, and run-time support for scalable
systems. LCR ’04. Houston, Texas: ACM.

Marathe, Virendra J., Spear, Michael F., Heriot, Christopher, Acharya, Athul, Eisen-
stat, David, Scherer III, William N., & Scott, Michael L. 2006 (Jun). Lowering
the Overhead of Software Transactional Memory. In: ACM SIGPLAN Workshop on
Transactional Computing. Transact, Ottawa, Canada, 06.11.2006.

Marathe, Virendra Jayant, & Moir, Mark. 2008. Toward high performance nonblock-
ing software transactional memory. Pages 227–236 of: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming. PPoPP ’08.
Salt Lake City, UT, USA: ACM.

Martin, Milo, Blundell, Colin, & Lewis, E. 2006. Subtleties of Transactional Memory
Atomicity Semantics. IEEE Comput. Archit. Lett., 5(July).

McKenney, Paul, Michael, Maged, Triplett, Josh, & Walpole, Jonathan. 2010. Why the
grass may not be greener on the other side: A comparison of locking vs. transactional
memory. SIGOPS Oper. Syst. Rev., 44(August), 93–101.

160

BIBLIOGRAPHY

Mellor-Crummey, John M., & Scott, Michael L. 1991. Algorithms for scalable syn-
chronization on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1),
21–65.

Moss, J. Eliot B. 2006. Open Nested Transactions: Semantics and Support. In: Work-
shop on Memory Performance Issues.

Ni, Yang, Welc, Adam, Adl-Tabatabai, Ali-Reza, Bach, Moshe, Berkowits, Sion,
Cownie, James, Geva, Robert, Kozhukow, Sergey, Narayanaswamy, Ravi, Olivier,
Jeffrey, Preis, Serguei, Saha, Bratin, Tal, Ady, & Tian, Xinmin. 2008. Design and
implementation of transactional constructs for C/C++. Pages 195–212 of: Proceed-
ings of the 23rd ACM SIGPLAN conference on Object-oriented programming systems
languages and applications. OOPSLA ’08. Nashville, TN, USA: ACM.

Papadimitriou, Christos H. 1979. The Serializability of Concurrent Database Updates.
J. ACM, 26(4), 631–653.

Perelman, Dmitri, & Keidar, Idit. 2010. SMV: Selective Multi-Versioning STM. In:
TRANSACT ’10: 5th Workshop on Transactional Computing.

Reed, David P. 1978. Naming and Synchronization in a Decentralized Computer System.
Ph.D. thesis, Massachusetts Institute of Technology Cambridge, MA, USA.

Reed, David P. 1983. Implementing atomic actions on decentralized data. ACM Trans.
Comput. Syst., 1(February), 3–23.

Riegel, Torvald, Felber, Pascal, & Fetzer, Christof. 2006. A lazy snapshot algorithm
with eager validation. Pages 284–298 of: Proceedings of the 20th international conference
on Distributed Computing. DISC’06. Stockholm, Sweden: Springer-Verlag.

Riegel, Torvald, Fetzer, Christof, & Felber, Pascal. 2008. Automatic data partitioning
in software transactional memories. Pages 152–159 of: Proceedings of the twentieth
annual symposium on Parallelism in algorithms and architectures. SPAA ’08. Munich,
Germany: ACM.

Saha, Bratin, Adl-Tabatabai, Ali-Reza, Hudson, Richard L., Minh, Chi Cao, &
Hertzberg, Benjamin. 2006. McRT-STM: a high performance software transactional
memory system for a multi-core runtime. Pages 187–197 of: Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of parallel programming. PPoPP
’06. New York, New York, USA: ACM.

161

BIBLIOGRAPHY

Shavit, Nir, & Touitou, Dan. 1995. Software transactional memory. Pages 204–213
of: Proceedings of the fourteenth annual ACM symposium on Principles of distributed
computing. PODC ’95. Ottowa, Ontario, Canada: ACM.

Smith, Jim, & Nair, Ravi. 2005. Virtual Machines: Versatile Platforms for Systems and
Processes (The Morgan Kaufmann Series in Computer Architecture and Design). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Spear, Michael F., Marathe, Virendra J., Dalessandro, Luke, & Scott, Michael L. 2007.
Privatization Techniques for Software Transactional Memory. Pages 338–339 of: Pro-
ceedings of the Twenty-sixth Annual ACM Symposium on Principles of Distributed Com-
puting. PODC ’07.

Spear, Michael F., Michael, Maged M., & von Praun, Christoph. 2008. RingSTM:
Scalable Transactions with a Single Atomic Instruction. Pages 275–284 of: Proceedings
of the Twentieth Annual Symposium on Parallelism in Algorithms and Architectures.
SPAA ’08.

Spear, Michael F., Dalessandro, Luke, Marathe, Virendra J., & Scott, Michael L. 2009. A
comprehensive strategy for contention management in software transactional mem-
ory. Pages 141–150 of: Proceedings of the 14th ACM SIGPLAN symposium on Principles
and practice of parallel programming. PPoPP ’09. Raleigh, NC, USA: ACM.

Sutter, Herb, & Larus, James. 2005. Software and the Concurrency Revolution. Queue,
3(7), 54–62.

Wamhoff, Jons-Tobias, Fetzer, Christof, Felber, Pascal, Rivière, Etienne, & Muller,
Gilles. 2013. FastLane: improving performance of software transactional memory
for low thread counts. Pages 113–122 of: Proceedings of the 18th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming. PPoPP ’13. Shenzhen,
China: ACM.

Wang, Cheng, Chen, Wei-Yu, Wu, Youfeng, Saha, Bratin, & Adl-Tabatabai, Ali-Reza.
2007. Code Generation and Optimization for Transactional Memory Constructs in
an Unmanaged Language. Pages 34–48 of: Proceedings of the International Symposium
on Code Generation and Optimization. CGO ’07. Washington, DC, USA: IEEE
Computer Society.

White, Sean, & Spear, Michael. 2010 (September). On reconciling hardware atomicity,
memory models, and __tm_waiver. In: 2nd Workshop on the Theory of Transactional
Memory (WTTM).

162

BIBLIOGRAPHY

Yoo, Richard M., Ni, Yang, Welc, Adam, Saha, Bratin, Adl-Tabatabai, Ali-Reza, & Lee,
Hsien-Hsin S. 2008. Kicking the tires of software transactional memory: why the
going gets tough. Pages 265–274 of: Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures. SPAA ’08. Munich, Germany: ACM.

Zyulkyarov, Ferad, Cristal, Adrian, Cvijic, Sanja, Ayguade, Eduard, Valero, Mateo, Un-
sal, Osman, & Harris, Tim. 2008. WormBench: a configurable workload for evaluat-
ing transactional memory systems. Pages 61–68 of: Proceedings of the 9th workshop on
MEmory performance: DEaling with Applications, systems and architecture. MEDEA
’08. Toronto, Canada: ACM.

Zyulkyarov, Ferad, Harris, Tim, Unsal, Osman S., Cristal, Adrían, & Valero, Mateo.
2010a. Debugging programs that use atomic blocks and transactional memory. Pages
57–66 of: Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice
of parallel programming. PPoPP ’10. Bangalore, India: ACM.

Zyulkyarov, Ferad, Stipic, Srdjan, Harris, Tim, Unsal, Osman S., Cristal, Adrián, Hur,
Ibrahim, & Valero, Mateo. 2010b. Discovering and understanding performance bot-
tlenecks in transactional applications. Pages 285–294 of: Proceedings of the 19th in-
ternational conference on Parallel architectures and compilation techniques. PACT ’10.
Vienna, Austria: ACM.

163

	Resumo
	Abstract
	Acknowledgments
	Introduction
	Thesis Scope
	Introduction to STMs
	Why STMs do not perform better?
	Thesis Statement
	Main Contributions
	Outline of the Dissertation

	Motivation, Problem Statement, and Approach
	Basic Terminology
	What is the overhead of a transparent API?
	How much overhead can we eliminate?
	Problem Statement
	General Approach
	Summary

	Background & State of the Art
	STM design alternatives
	Buffering mechanism
	Ownership acquisition
	Concurrency control and validation time
	Transactional memory accesses
	API decomposition level

	Runtime Overheads
	Compiler Over-instrumentation
	Benchmarks for STMs
	Debug and Profiling Tools for STMs
	Summary

	Annotations to Avoid Over-instrumentation
	Deuce STM Optimizations
	Over-instrumented Tasks
	New Java Annotations for the Deuce API
	@NoSyncField annotation
	@NoSyncArray annotation

	Performance Evaluation
	Summary

	Lightweight Identification of Captured Memory
	Deuce STM Overview
	Runtime Capture Analysis
	Lightweight Identification of Captured Memory
	Extending Deuce STM
	Filtering
	Storing metadata in-place

	Validation
	Performance evaluation
	Memory Consumption Evaluation

	Summary

	Adaptive Object Metadata
	JVSTM Overview
	The Adaptive Object Metadata approach
	Reverting Objects
	Extending Objects
	Reading Objects
	Correctness of the AOM Operations

	Implementation Approaches
	Basics of the Java Object Model
	Integrating JVSTM with AOM in Jikes RVM
	Extending Deuce STM

	Validation
	Performance Evaluation
	Memory Consumption Evaluation

	Summary

	Combining LICM and AOM
	Enhancing the JVSTM with both LICM and AOM
	Vacation
	STMBench7
	JWormBench

	Comparing jvstm-aom-licm with other approaches
	Summary

	Conclusions
	Main Contributions
	Future Research
	Concluding Remarks and Future Directions

	JWormBench
	The WormBench benchmark
	JWormBench: A port of WormBench to Java
	JWormBench applications
	STM integration
	Correctness test
	Contention level

	Extending Jikes RVM's just-in-time compiler
	Architecture of Jikes RVM's just-in-time compiler
	Wrapping a method call in a transaction control flow
	Changing the getfield and putfield default behaviors

	Extending Deuce STM

