
Text Web Templates considered Harmful

Fernando Miguel Carvalho1[0000−0002−4281−3195], Luis Duarte1[0000−0003−3967−6254],
and Julien Gouesse2

1 ADEETC, ISEL, Polytechnic Institute of Lisbon, Portugal
{mcarvalho,lcduarte}@cc.isel.ipl.pt

2 Orange, France gouessej@orange.fr

Abstract. For the last decades text-based templates have been the primary op-
tion to build dynamic web pages. Until today, no other alternative has rebutted
this approach. Yet, using text-based templates has several drawbacks including:
1. blocking resolution, 2. programming languages heterogeneity, 3. limited set
of templating features and 4. opinionated idioms. In this paper we show how
a domain specific language (DSL) for HTML (such as HtmlFlow, Kotlinx.html
or React JSX) can suppress the text-based templates limitations and outperform
state-of-the-art template engines (such as JSP, Handlebars, Thymeleaf, and oth-
ers) in well known benchmarks. To that end, we use the Spring Framework and
the sample application PetClinic to show how a DSL for HTML provides unopin-
ionated web templates with boundless resolving features only ruled by the host
programming language (such as Java, Kotlin or JavaScript).

Keywords: Web Templates · Dynamic Web Pages · Domain Specific Languages
·Web Application · HTML.

1 Introduction

Web templates (such as JSP, Handlebars or Thymeleaf) are based in HTML documents,
which are augmented with template specific markers (e.g. <%, {{}} or ${}) representing
dynamic information that can be replaced at runtime by the results of corresponding
computations to produce a view [16,1]. The parsing and markers replacement process
(i.e. resolution) is the main role of the template engine [31]. Even for those engines
providing markers extensibility, these markers obey to a set of rules that restrict access
to the host programming language features (e.g. Java) from the template. Thus, web
templates development is dictated by the engine guidelines that force programmers to
follow a set of given idioms and practices, i.e. opinionated[30].

In Listing 1.1 we show a sample Thymeleaf template[15] of a Spring web appli-
cation [23] (part of the owner details view of the PetClinic web application[11]). This
template builds a dynamic table containing a description list on each table row. In this
case, the template receives a data model object owner with a pets property (line 2) and
for each pet it generates a table row (tr in line 2) containing a description list (dl in line

Springer Nature Switzerland AG 2020, Lecture Notes in Business Information Processing,
LNBIP 399, htt ps : //doi.org/10.1007/978−3−030−61750−9 4

https://doi.org/10.1007/978-3-030-61750-9_4


2 FM. Carvalho et al.

4) with the pet’s name (line 6) and its birthdate (line 9). This Listing highlights the het-
erogeneity resulting from the technological mix of the HTML language with Thymeleaf
template dialects (i.e. attributes beginning with th) and also the web framework pro-
gramming language (i.e. Java) that is used, for example, on the auxiliary function call
of line 9: temporals.format(pet.birthDate,’yyyy-MM-dd’).

Listing 1.1: Thymleaf template for owner details view of PetClinic web application.

1 <table class="table table -striped">
2 <tr th:each="pet : ${owner.pets}">
3 <td valign="top">
4 <dl class="dl-horizontal">
5 <dt>Name</dt>
6 <dd th:text="${pet.name}"></dd>
7 <dt>Birth Date</dt>
8 <dd
9 th:text="${#temporals.format(pet.birth , ’yyyy -MM-dd ’)}">

10 </dd>
11 </dl>
12 </td>
13 </tr>
14 </table>

Template engines distinguish themselves by the idiom and subset of available mark-
ers to control the dynamic content. But generally, all engines provide the same set of
core templating features through specific dialects such as those used in the example of
Listing 1.1 that we may group in the following categories:

1. text replacement – all expressions denoted with ${...}markers in lines 2, 6 and 9.
2. variables – in line 2 we declare an auxiliary variable pet.
3. control flow such as conditional evaluation and loops – th:each loop in line 2.
4. utility functions – there is a set of built-in Thymeleaf utility objects available through

the marker #, such as #temporals in line 9.
5. partial views or fragments inclusion (i.e. transclusion [35]) – in section 4.
6. data binding [29] – property pets of the owner data model [13], in line 2.

These dialects lead web frameworks to encompass at least 3 distinct programming
languages on web development: 1) a high-level programming language used, for exam-
ple, to gather data and build a data model, 2) HTML to build the skeleton of the web
template and 3) template specific markers to manage the dynamic content of the web
page. From these observations we argue that text-based templates, such as Thymeleaf
templates incur in the following drawbacks:

1. no compile time validation;
2. require keen understanding of a diversity of technologies including the web frame-

work host language (e.g. Java), HTML and the template engine dialects;
3. intricate definition from mixing idioms between HTML, template dialects and high-

level programming language (e.g. line 9 of Listing 1.1);
4. restricted set of control flow features enforced by template dialects, such as th:each.



Text Web Templates considered Harmful 3

In this paper we state that an internal domain specific language (DSL) for HTML,
such as HtmlFlow[8], KotlinX.html[27] or React JSX[37], can mitigate all pointed dis-
advantages and still provide the core templating features. These DSLs avoid specific
dialects and give programmers all the freedom of the core programming language (Java,
Kotlin or JavaScript). They let programmers interleave fluently HTML building blocks
with any available construction of the host programming language. Thus, programmers
may choose the most convenient idiom to write the template’s control flow according
to their preferences

In[10] we show how a higher-order template (HoT) does not block the template
resolution and pushes the resulting HTML to the response stream as its content is being
resolved [22,28]. Rather than pulling data from a source and fully complete markers
of a template, HoT reacts to data and push the resulting HTML as it is being resolved.
This approach provides better user experience keeping the browser responsive, even
on presence of large data sets, and presents better rendering performance, in compar-
ison to state of the art template engines, such as Handlebars and React, as shown in
performance benchmarks[10,32]

To prove the effectiveness of HtmlFlow even for developing complex web applica-
tions we have replaced Thymeleaf templates of the Spring PetClinic[11] web applica-
tion by HtmlFlow based templates. Spring PetClinic is an open-source Java application
commonly used to demonstrate different design patterns and concepts, which was in-
spired by PetStore[34] that illustrates the use of J2EE to develop an eCommerce web
application. Our work demonstrates how HtmlFlow simplifies several template idioms
and still preserves the web templates role through HoT. Finally, we use the same ap-
proach with alternative DSLs for HTML namely j2Html[2], KotlinX.html and React,
where HtmlFlow outperforms the competition in well-known benchmarks[10,32].

For the remainder of this paper we present in the next section state of the art solu-
tions that deal with web templates and domain specific languages. Then in Section 3 we
compare different alternative DSLs for HTML. In Section 4 we revisit the concept of
higher-order templates (HoT) provided in HtmlFlow. After that in Section 5, we present
the implementation of the most used template idioms with Thymeleaf and HtmlFlow
in the PetClinic web application. In Section 6, we present a performance evaluation.
Finally, in Section 7 we conclude and discuss some future work.

2 State of the Art

In this section we discuss related work in web templates and domain specific languages
field. We first address in subsection 2.1 the main properties that dictates the design of
web template engines. After that, in subsection 2.2, we present background work on
domain specific languages and their main characteristics.

2.1 Web templates

Web template engines deal with data models as their inputs to produce HTML as out-
put [16]. Martin Fowler distinguishes between two possible approaches followed by
view engines: 1) template view and 2) transform view. The former is HTML centric and



4 FM. Carvalho et al.

thus oriented to the output. In this case, the view is written in the structure of the HTML
document and embed markers to indicate where data model properties need to go. Since
the seminal technologies JSP, ASP and PHP appeared with the template view pattern,
many other alternatives emerged along the last two decades3, turning this pattern into
one of the most used approaches in web applications development.

On the other hand, the transform view is oriented to the input and how each part
of the input is directly transformed into HTML. XSLT is maybe one of the most well-
known programming languages to specify transformations around XML data. In this
case the XML data takes the place of the input that is transformed by the XSLT to
another format (e.g. HTML). Also, the functional nature of the transform view pattern
enables its composition in a pipeline of transformations where each stage takes the result
of the previous transformation as input and produces a new output that is passed to the
next transformation. For example, the Cocoon Java library [6] provides a framework for
building pipelines of XML transformations steps specified in XSLT.

The transform view pattern has similarities with the higher-order templates[10] ap-
proach of HtmlFlow where a view is a first-class function that takes an object model
as parameter and applies transformations over its properties. The object model has the
role of the input (e.g. XML data) and the HTML domain-specific language is the idiom
used to transform the model into HTML.

2.2 Domain specific languages

The idea of domain-specific languages (DSL) was first approached by Landin [25],
which introduces a framework that dictates the design of a specific language restricted
by a domain. A DSL is a programming language specialized to a particular applica-
tion domain[14]. This is in contrast to general-purpose languages, which are broadly
applicable across domains.

DSLs can be divided in two types: external or internal[17]. External DSLs are lan-
guages created without any affiliation to a concrete programming language. An example
of an external DSL is the regular expressions search pattern[36], since it defines its own
syntax without any dependency of programming languages. Furthermore, regular ex-
pressions are easier to use and manipulate by experts than implementing the same set
of verification rules through control flow instructions, such as if/else and String
operations. Writing in Java programming language an equivalent validation to that one
presented in Listing2.1 would require more than a single line of code to verify if a string
is in 12-hour format with optional leading 0.

Listing 2.1: Regular expression for time in 12-hour format with optional leading 0.

(0?[0 -9]|1[0 -1]):([0 -5][0-9])

On the other hand an internal DSL is defined within a host programming language
as a library and tends to be limited to the syntax of the host language, such as Java.
For that reason, internal DSLs can also be referred as embedded DSLs since they are
embedded in the programming language where they are used.

3 wikipedia.org/Comparison of web template engines

https://en.wikipedia.org/wiki/Comparison_of_web_template_engines


Text Web Templates considered Harmful 5

JQuery[33] is one of the most well-known examples of an internal DSL in Javascript,
designed to simplify HTML DOM[21] tree traversal and manipulation. In the data struc-
tures field the Language Integrated Query (LINQ)[20] is an example of an internal DSL
that enables querying of any kind of collection. An idea that is heavily inspired by the
concept of lazy lists, also known as streams, first described in 1965 by Landin[24].

Another example of an internal DSL is jMock[18], which is a Java library that
provides tools for test-driven development. In Listing 2.2 we can see that jMock uses a
DSL to create expectations. In the concrete example it obtains the value of a property
Greeting (getGreeting() in line 5), and asserts if it matches the expected value,
which is Good afternoon in line 6. In this case the semantics of the methods used
by jMock aim to simplify the programmer’s understanding of the tests that are being
performed.

Listing 2.2: jMock example.

1 final GreetingTime gt = context.mock(GreetingTime.class);
2 (new Greeting()). setGreetingTime(gt);
3
4 context.checking(new Expectations (){{
5 one(gt).getGreeting();
6 will(returnValue("Good afternoon"));
7 }});

In common all internal DSLs, such as JQuery, LINQ or jMock, use functions to
define their languages. According to [17] we may identify three different patterns of
combining functions to make a DSL: 1) function sequence; 2) method chaining, and 3)
nested function.

A function sequence is about a combination of function calls as a sequence of state-
ments. Consider for example the following set of functions: html(), head(), body(),
title(), div() and p(), each one responsible for creating the corresponding HTML
element with the same name of the function. So, the HTML document in Listing 2.4
could be the result of the execution of the corresponding Java program in Listing2.3.

Listing 2.3: Function sequence based
DSL for HTML.

html();
head();

title();
p("My title");

body();
div();

p("A statement.");

Listing 2.4: Resulting HTML of 2.3.

<html>
<head>

<title>
<p>My title</p>

</title>
</head>
<body>

<div>
<p>A statement</p>

...



6 FM. Carvalho et al.

As we can see in Listing 2.3, if we try to lay out and organize a function sequence
in an appropriate way, we can read it clearly as the resulting output in HTML. The
major problem regarding this approach is whichever way we use to define a function
sequence we will always need auxiliary context variables in order to know where we are
in the building process. Considering the calls to p(), the builder needs to know which
element will contain the resulting paragraph element. So, it does that by keeping track
of the current HTML element in a variable. If these functions are global, then the state
will end up being global too.

Method chaining pattern avoids this problem, since it is based on methods instances
calls, where the target object may track any necessary context. In this case, it uses a se-
quence of method calls where each call acts on the result of the previous call. Thus, the
methods are composed by calling one on top of the other. Yet, we still need some kind
of bare function to begin the chain, such as new Html() in Listing 2.5 that instantiates
the target root.

Listing 2.5: Method chaining based
DSL for HTML.

new Html()
.head()

.title()
.p("My title")

.body()
.div()

.p("A statement.")

Listing 2.6: Nested function based DSL
for HTML.

html(
head(

title(
p("My title")),

body(
div(

p("A statement.")))));

Nested function combines functions by making function calls arguments in higher-
level function calls. This approach eliminates the need for a context variable, as the
arguments are all evaluated before a function is called. A simple sequence of nested
functions ends up being evaluated backwards to the order they are written. This means
that arguments are first evaluated before the function being invoked. In Listing 2.6 p()
is first evaluated and its resulting paragraph will be the argument of the call to title(),
which in turn will be the argument of head() and henceforward.

Yet, the nested function pattern incurs into the same problems of functions global-
ness as function sequence pattern.

3 Domain-specific languages for HTML

Given the DSL design alternatives presented in section 2.1 we may describe DSLs for
HTML according to the classification presented in the Table 1. For comparison we also
include in Table 1 a non DSL-based engine, i.e. Thymeleaf, as the representative of
most text-based templates such as JSP, Handlebars, Velocity and others. Functional
templates regard the capacity of implementing Web templates as first-class functions,
which is only possible with an internal DSL for HTML. The performance results in the
Spring templates benchmark[32] are relatively to HtmlFlow, which is the most perfor-
mant engine among these libraries. We are not considering React performance on these
results, because this benchmark evaluates the performance of resolving HTML based



Text Web Templates considered Harmful 7

templates in the web server, whereas React only resolves HTML within the browser and
just receives plain JSON from the web server. Nevertheless, in [10] we have already
compared the performance including all the processing pipeline from the web server
to the browser, which shows that React is almost 4 times slower than the competition
rendering HTML for a data source with 10000 items.

Library DSL
Template

dialect
Functional
templates

HTML
safety

Data
structureless

Spring templates
benchmark

Thymeleaf - Thymeleaf × × - 32%
j2html Internal Java X × × 26%

kotlinX.html Internal Kotlin X X X 58%
React External JavaScript X × × -

HtmlFlow Internal Java X X X 100%
Table 1: Comparing Thymeleaf characteristics with DSLs for HTML.

In the following subsections we will describe each one of the DSLs for HTML and
further properties: HTML safety and data structureless, which are an essential design
key for the best performance presented by HtmlFlow.

3.1 j2Html

As other internal DSLs for HTML, j2html replaces the need of textual template files
by templates defined within the Java language, which enables the use of all Java pro-
gramming language features to control the flow of the dynamic parts. J2html uses a
nested function approach where templates has a similar layout to that one presented in
Listing 2.6. Thus, since arguments are first evaluated before the function being invoked,
this technique does not allow the resulting HTML to be emitted on demand according
to functions calls order. Otherwise the HTML would be generated backwards.

So, the result of the execution of a j2Html template is a tree structure that compose
Tag objects[19]. This template must be further resolved through the render() method
to produce an HTML document.

Furthermore, the major handicap of j2html is the lack of validation of the HTML
language rules either at compile time or at runtime. Hence, it does not provide HTML
safety because it does not ensure that the resulting HTML is conforming a valid HTML
document.

3.2 KotlinX.html

The KotlinX.html [27] is another popular DSL for HTML and it has been written in
Kotlin programming language. One of the Kotlin design principles was to create an
inter-operative language with Java. Although its syntax is not compatible with the stan-
dard Java syntax, both languages can coexist within the same program source code.



8 FM. Carvalho et al.

Other main advantage of Kotlin is that it heavily reduces the amount of textual infor-
mation needed to create code by using type inference and other techniques.

The KotlinX.html provides a fluent interface that mixes the three approaches of
combining functions: function sequence, method chaining, and nested function. Yet,
that mix is hidden when we are programming in Kotlin thanks to the mechanism of
function literals (i.e. lambdas) with receiver[5].

Considering the use case of an internal DSL for HTML presented in section 2.2, the
corresponding version for Kotlin using function literals with receiver would be written
according to Listing 3.1. The equivalent use in Java of this Kotlin DSL is presented in
Listing 3.2. In truth, whenever we write in Kotlin a block {...} following a function
name (e.g. head {...}), we are invoking that function with the block {...} as the the
function’s argument. To that end, the block {...} is passed as an anonymous function
(or lambda) to the invoked function.

Method calls to head, title, p, etc in Listing 3.1 are equivalent to this.head,
this.title and this.p. The this target is implicit and is the corresponding self
lambda parameter of Listing 3.2. Declaring the self parameter as a receiver has the
advantage of allowing the use of parameterless lambdas. In Kotlin, a parameterless
lambda is denoted as {...} rather than {... -> ...}, which leads to the idiom ex-
pressed in the example of Listing 3.1.

Listing 3.1: Kotlin type-safe builders
for HTML.

html {
head {

title {
p("My title")

}
}
body {

div {
p("A statement.")

}
}

}

Listing 3.2: Kotlin type-safe builders for
HTML invoked with Java code.

html(self -> {
self.head(self ->

self.title(self ->
self.p("My title")

)
);
self.body(self ->

self.div(self ->
self.p("A statement.")

)
);

});

As a result of using function arguments, it delays the evaluation of those functions
and suppresses the backwards evaluation problem intrinsic to the nested function ap-
proach. So, the result of the execution of a KotlinX.html template does not require any
auxiliary data structure and can be immediately emitted as functions are being invoked.
Hence KotlinX.html templates resolution provides both modes: a DOM tree based and
a data structureless mode that can be generated to an output stream.

Like HtmlFlow, the HTML fluent interface for KotlinX.Html is automatically built
from the XSD definition of the HTML 5 language. Thus, the generated DSL ensures
that each element only contains the elements and attributes stated in the HTML5 XSD
document.



Text Web Templates considered Harmful 9

3.3 React

React introduces a syntax extension to JavaScript (JSX) that allows the use of plain
HTML together with JavaScript. This means that you can use JSX inside of if statements
and for loops, assign it to variables, accept it as arguments, and return it from functions.

As others internal DSLs for HTML, React allows programmers to use any valid
JavaScript expression interleaved with the HTML template definition. JavaScript ex-
pressions should be wrapped in curly braces as denoted in line 6 of Listing 3.3.

Listing 3.3: Example of a React template defining an HTML divisory with current date.

1 class DateDiv extends React.Component {
2 render() {
3 return (
4 <div>
5 <h1>Date Time </h1>
6 <h2>It is {new Date().toLocaleTimeString()}.</h2>
7 </div>
8 }
9 }

10 }

Yet here, JSX behaves as an external DSL since HTML is a distinct idiom from
JavaScript. After compilation, JSX expressions become regular JavaScript function
calls and evaluate to JavaScript objects.

Moreover React templates result in a representation of the user-interface kept in
memory to hold all information about the component tree. Although highly optimized
this approach incurs in additional overheads of maintaining this auxiliary data structure.

3.4 HtmlFlow

The primary goal of HtmlFlow was to provide a DSL that helps developers to write safe
HTML in Java programs. HtmlFlow distinguishes for providing:

1. data structureless – a key factor that contributes to achieve better performance than
competition in several benchmarks;

2. method chaining that allows the calls to be chained together in a single statement
(i.e. method chaining).

3. HTML safety ensuring that the resulting HTML is conforming to a valid HTML
document.

Data Structureless A distinct aspect of HtmlFlow in comparison to other DSLs is
that it follows a data structureless approach. This means that invoking the HtmlFlow
API does not instantiate any objects representing nodes or elements, and it neither
stores or maintains such useless objects in memory. Instead HtmlFlow API methods
emit HTML on demand as they are being invoked. This is one of the key aspects that
makes HtmlFlow one of the most performant engines in a diversity of state of the art
benchmarks[10,32,9].



10 FM. Carvalho et al.

This core characteristic is the result of the fluent API nature of HtmlFlow, which
enforces methods to be invoked by the same order they are chained. We will put it clear
after giving some details about the HtmlFlow API design in next section.

Method chaining Regarding the method chaining requirement we stated that every
HTML element (i.e. instance of Element) returned by a method call should have meth-
ods to create the next inner HTML element, such as the following pipeline:

div().table().tr().. . . , which should create a div element containing a table
that in turn will have a table row element tr. On the other hand, we would like to have
an auxiliary method that allows to navigate back in the elements tree. So, all HtmlFlow
elements have the () method that returns the corresponding element’s parent. More-
over, this method should return the parent element with the correct type. Regarding the
previous example, this means that calling () after tr() should return an instance of
Table whereas calling () after table() should return an instance of Div. When we
navigate back to the parent element we would like to get a consistent route.

We tackle this issue through generics[26], which allow us to keep track of the tree
structure of the elements that are being created and keep adding elements, or moving
up in the tree structure without losing the type information of the parent. In Listing 3.4
we can observe how we can take advantage of the type arguments.

Listing 3.4: Explicit use of type arguments in the subtypes of Element

Html <Element > html = new Html <>();
Body <Html <Element >> body = html.body();

P<Header <Body <Html <Element >>>> p1 = body.header().p();
P<Div<Body <Html <Element >>>> p2 = body.div().p();

Header <Body <Html <Element >>> header = p1.__();
Div<Body <Html <Element >>> div = p2.__();

When we create the Html element we should indicate that it has a parent, for con-
sistency. Then, as we add elements, such as Body, we automatically return the recently
created Body element, but with parent information that indicates that this Body instance
is descendant of an Html element. After that, we create two distinct P elements, p1,
which has an Header parent, and p2, which has a Div parent. This information is re-
flected in the type of both variables. Lastly, we can invoke the () method,which re-
turns the current element parent, and observe that each P instance returns its respective
parent object, with the correct type.

In the example presented in Listing 3.4 the usage of the fluent interface might seem
to be excessive verbose to define a simple HTML document. Yet, for most common
purposes we can suppress the auxiliary variables and simplify its usage chaining method
calls as we show in Listing 3.5.

HTML Safety Finally, the invocation chain should produce valid HTML. This means
that HtmlFlow should not allow statements like img().table(); since in HTML we
may not include a table inside an image. To that end, every instance of Element returned



Text Web Templates considered Harmful 11

Listing 3.5: Example of the implicit use of type arguments in HtmlFlow API

Html <Element > html = new Html <>()
.body()

.header()
.p().__()

.__() // header

.div()
.p().__();

.__() // div
.__(); // body

by HtmlFlow only provides methods to create children elements conforming to HTML
5 rules. So, every concrete element is represented by a class extended from Element
with a subset of methods that respects the kind of permitted children elements.

Following this idea we have developed the xmlet platform[12] that parses the XSD
schema of HTML5 and automatically generates all elements classes and interfaces re-
quired by HtmlFlow. All the implementations of the Element interface corresponding
to all kind of HTML elements available in HTML 5 are automatically built from the
XSD definition of the HTML 5. These implementations are part of the HtmlApi auxil-
iary library used by the HtmlFlow as denoted in Figure 1.

Fig. 1: xmlet framework build process and its organization in three main components:
XsdParser, XsdAsm and HtmlApi.

In turn, the HtmlApi is built with the support of ASM [4] (bytecode instrumenta-
tion tool) implemented by the XsdAsm component, which consumes the information
gathered and provided by the XsdParser.

The HtmlFlow also includes the Flowifier feature that allows to get an HtmlFlow
template view definition from the corresponding HTML source. This feature was crucial
to translate the PetClinic HTML views to the equivalent definition in HtmlFlow idiom.



12 FM. Carvalho et al.

4 HoT: Higher-Order Templates

A higher-order template (HoT) is an advanced technique for resolving a template view
progressively as data from its context object is being available, rather than waiting for
whole data and resolve the entire template. A higher-order template (HoT) defines a
template view as a function and its context object as other function received by ar-
gument. Also, a higher-order template can receive other templates as parameters. In
this case, these parameters play the role of partial views. Like a higher-order function
may take one or more functions as arguments, a higher-order template may take one or
more templates views as arguments. This compositional nature enables reusing template
logic.

Templates in HtmlFlow are specified through Java functions, which can be defined
as named or anonymous functions (i.e. lambdas) For example, the template of List-
ing 1.1 can be expressed in HtmlFlow with the tracksTpl function of Listing 4.1.

Listing 4.1: HtmlFlow template function for a division element with a dynamic un-
ordered list

HtmlTemplate <Stream <Track >> tracksTpl = (view , tracks) -> view
.div()

.ul()

.of(ul -> tracks.forEach (item -> ul
.li().text(item.getName()).__() // li

))
.__ () // ul

.__(); // div

The tracksTpl function receives two parameters: an HtmlFlow view and a context
object (e.g. tracks). The view parameter provides the HTML fluent interface [17] with
methods corresponding to the name of HTML elements and two additional methods:
1) () to close an HTML element tag, and 2) of(elem -> ...) useful to chain a
statement that starts with an expression different from the previous element (i.e. elem
in the lambda). The tracks parameter acts like the model in the model-view-controller
pattern [13]. Here the tracks is a Java Stream, which is an abstraction over a lazy
sequence of objects (i.e. instances of Track). Some may argument that a Java Stream
is not a first-class function, such as we have claimed that a context object would be
for a HoT. Yet, that is only a design choice of the Java environment, since in truth any
sequence (such as Stream) can be implemented through a higher-order function[3].
Nevertheless, in this case, the tracks object is traversed in the forEach method call
(i.e. tracks.forEach(...)) chained within the template definition.

Regarding a template with partial views then the corresponding function should
receive a further argument for each partial view. For example, considering that the
tracksTpl function takes an additional footer argument, then it can include this par-
tial view through the method addPartial() that is available in all elements objects.
We can chain the call to addPartial() in the template definition as depicted in the
example of the Listing 4.2, that adds the footer after the definition of the unordered
list.



Text Web Templates considered Harmful 13

Listing 4.2: HtmlFlow template with a partial view footer

HtmlTemplate <Stream <Track >> tracksTpl = (v, trks , footer) -> v
.div()
... // adds ul and an li for each track
.of(div -> div.addPartial(footer));
.__() // div

If a partial view has no context object and does not require model binding, then
we can discard the template function and directly create that view from an expression,
through the view() factory method of the class StaticHtml. For example, we may
define a billboard division (i.e. bbView) as depicted in the following view definition:

HtmlView bbView = StaticHtml.view().div().text("Dummy billboard"). ();

Another advantage of using views as first-class functions is to allow views composi-
tion. For example, if want to define a partial view (e.g. footerView) with a placeholder
for another partial view (e.g. banner), then we may define a footerView method that
takes an HtmlView as the banner parameter and returns a new HtmlView as depicted
in Listing 4.3.

Listing 4.3: Partial view definition of a footer that takes another banner view as pa-
rameter

HtmlView footerView(HtmlView banner) {
return StaticHtml.view()

.div()
.of(div -> div.addPartial(banner))
.p().text("Created with HtmFlow").__() // p

.__(); // div
}

Thus, we may finally compose the tracksTpl template of Listing 4.2 with the
footerView, which in turn will be filled with the bbView. This creates the following
pipeline: tracksTpl <- footerView <- bbView.

For the tracksTpl function we can create a corresponding view (i.e. tracksView)
through the view() factory method of the class DynamicHtml as depicted in line 2
of Listing 4.4. Finally, we may compose all the parts of the tracksView through the
render method of HtmlView. For example, given a tracks stream, the footerView
and the bbView we may resolve the tracksView as depicted in line 3 of Listing 4.4.
Here we can observe the pipeline: tracksView <- footerView <- bbView with tracks-
View taking the footerView as argument, which in turn receives the bbView as argu-
ment.

Listing 4.4: Composing and resolving the tracksView

Stream <Track > tracks = ...
HtmlView <Stream <Track >> tracksView = DynamicHtml.view(tracksTpl);
String html = tracksView.render(tracks , footerView(bbView));



14 FM. Carvalho et al.

Having all the compositional parts of a template view defined as first-class functions
(the template itself, the context object and partial views) is a key feature to achieve the
HtmlFlow compositional nature.

5 Templates Idioms

We will use the PetClinic Spring application[11] as a use case of web templates to com-
pare several Thymeleaf dialects with the equivalent construction in a DSL for HTML.
The templates are responsible for displaying a data model and performing any display
logic that is particular to the type of view being rendered. In this, case we are going
to analyze how the following templates patterns are solved through specific Thymeleaf
dialects for each particular view:

1. variable assignment and conditional evaluation – createOrUpdateOwnerForm.html
view using th:with and th:text.

2. switch statement – inputField.html view using th:switch and th:case.
3. if statement and iteration loop – vetList.html view using th:if and th:each.
4. binding inputs and preprocessing expression – selectField.html view using

th:field and dialect ${expression} .
5. fragments and layouts – layout.html view using th:fragment and th:replace.

Here we are only illustrating a small subset of Thymleaf dialects including 10
different building blocks. We also highlight how a DSL for HTML can suppress the
need of this auxiliary features giving examples of the same views built with HtmlFlow,
KotlinX.html or React that does not require any auxiliary mechanism beyond their host
programming language, i.e. Java, Kotlin or JavaScript.

5.1 Variable assignment and conditional evaluation

Thymeleaf The PetClinic application uses the same view to update or create an ow-
ner object. This view presents an HTML form with the submit button presented in
Listing 5.1, which contains the label ’Add Owner’ or ’Update Owner’ depending on
whether the view is returned from the /owners/new or /owners/ownerId/edit path.

Listing 5.1: Thymleaf template button to create or update owner.

1 <button
2 th:with="text=${owner.isNew()} ? ’Add Owner ’ : ’Update Owner ’"
3 class="btn btn-default"
4 type="submit"
5 th:text="${text}">
6 </button>

To that end, the corresponding HTML button defines its text content through the
Thymeleaf attribute th:text, i.e. line 5 of Listing 5.1. The value of this attribute is



Text Web Templates considered Harmful 15

equals to result of the expression ${text}, where text is a variable previously declared
and assigned with attribute th:with in line 2 of Listing 5.1. In turn, the assignment
statement of line 2 uses the Thymeleaf ternary operator to build an expression that
results in ’Add Owner’ or ’Update Owner’ depending on whether the owner object
has its property isNew() set to true, or not. Note, this statement uses a mix of Java
to evaluate the property isNew() of the owner object and the Thymeleaf dialect to
build the ternary expression. Thus, the resulting complexity comes from the use of
the additional Thymeleaf dialect and two further attributes (th:text and th:with) to
achieve the desired behavior.

HtmlFlow In opposition, HtmlFlow let programmers interleave any kind of Java state-
ments to achieve this goal. We may choose between a Java if statement or a ternary
operator according to the developer programming stylistic preferences. In Listing 5.2
we present the equivalent HtmlFlow definition to the button of Listing 5.1. Note that we
can discard the auxiliary variable text used in the Thymeleaf example, since we are
customizing the button through a pure Java statement.

Listing 5.2: HtmlFlow template button to create or update owner.

1 .button()
2 .attrClass("btn btn-default")
3 .attrType(EnumTypeButtonType.SUBMIT)
4 .text(owner.isNew() ? "Add Owner" : "Update Owner")
5 .__()

Kotlinx.html Kotlinx.html shares the same expressiveness advantages of HtmlFlow:
fluent and HTML safety. Despite the idiomatic and syntax differences between Java and
Kotlin, the definition of Listing 5.2 share the same layout of Listing 5.3.

Listing 5.3: KotlinX.html template button to create or update owner.

1 button {
2 classes = setOf("btn btn-default")
3 type = ButtonType.submit
4 text(if (owner.isNew) "Add Owner" else "Update Owner")
5 }

ReactJS Similar to HtmlFlow and Kotlinx.html the React also allows the use of the
core framework programming language (i.e. JavaScript) in its entire plenitude. Yet,
since JSX is an external DSL mixed with pure JavaScript we must delimit JavaScript
blocks with a special character, i.e. {...}. Due to the JSX dialect nature, some words
are neither HTML nor JavaScript, such as className in line 2, of Listing 5.4. Never-
theless, the conditional evaluation stated with the JavaScript ternary operator in line 5
is analogous to the expression of the same line in Listing 5.2.



16 FM. Carvalho et al.

Listing 5.4: React template button to create or update owner.

1 <button
2 className=’btn btn-default ’
3 type=’submit ’
4 onClick={this.onSubmit}>
5 {owner.isNew ? ’Add Owner ’ : ’Update Owner ’}
6 </button>

5.2 Switch statement

Another way to display content conditionally is using the equivalent switch statement.
The PetClinic application takes advantage of this construction to provide a single in-
put control implementation with different behaviors according to the type of data. To
that end, it defines a Thymeleaf fragment that exports an HTML div element with a
label and an input elements. In Listing 5.5 we present a simplified version of the
inputField.html fragment that only includes the input definition.

Listing 5.5: Thymleaf fragments inputField.html.

1 <th:block th:fragment="input (label , value , type)">
2 <div class="form -group">
3 ...
4 <div th:switch="${type}">
5 <input th:case="’text ’" type="text" value="{value}" />
6 <input th:case="’date ’" type="text" value="{value}"
7 placeholder="YYYY -MM-DD"
8 title="Enter a date in this format: YYYY -MM-DD"
9 pattern="(?:19|20)[0 -9]{2} -(?:(?:0[1 -9]|1[0 -2]) -..."/>

10 </div>
11 </div>
12 </th:block>

This fragment is defined with the tag th:block and attribute th:fragment that we
will describe ahead in section 5.5. Note in Listing 5.5 that depending on the parameter
type (th:switch on line 4) this fragment will present a different kind of input element
that can be according a free input text or a date format. Yet, part of the definition of this
input is repeated in lines 5 and 6, because there are a couple of attributes definitions
shared in both cases, namely the attributes type and value. On the other hand, the
HtmlFlow template definition of Listing 5.6 does not need to repeat the assignment of
the attributes type and value and thus, it only includes a single use of these attributes
(line 4).

Thanks to the compositional nature of higher-order templates this fragment is de-
fined with a first-class function as any other template view in HtmlFlow, avoiding spe-
cific markers such as Thymleaf <th:block th:fragment>. Also this HtmlFlow partial
view does not require the additional parameter type to check the class of the instance
value. Instead, we can simply use the Java instanceof operator (line 5) to verify the
type of the instance value.



Text Web Templates considered Harmful 17

Listing 5.6: HtmlFlow fragment InputField.

1 HtmlView <LabelAndValue > view = DynamicHtml.view((v, model) -> v
2 .div().attrClass("form -group")
3 ...
4 .input().attrType(TEXT).attrValue(model.value)
5 .of(__ -> { if(model.value instanceof LocalDate) input
6 .attrPlaceholder("YYYY -MM-DD")
7 .attrTitle("Enter a date in this format: YYYY -MM-DD")
8 .attrPattern("(?:19|20)[0 -9]{2} -(?:(?:0[1 -9]|..."));
9 })

10 .__()
11 .__()
12 )

5.3 If statement and iteration loop

The VetList view aims to show a list of all veterinaries, where each row presents
the veterinarian’s full name and all its specialties concatenated in a single String. Yet,
if a veterinary does not have any specialty then it should present the String none. To
that end, the corresponding Thymeleaf template of Listing 5.7 takes advantage of the
th:each to traverse the vets.vetList (line 2) and to join all specialties (line 6 and
7). On the other hand, it uses the th:if (line 9) to check whether the list is empty and
present the String none if it is.

Listing 5.7: vetList.html Thymeleaf sample for displaying veterinaries.

1 <tbody>
2 <tr th:each="vet : ${vets.vetList}">
3 <td th:text="${vet.firstName + ’ ’ + vet.lastName}"></td>
4 <td>
5 <span
6 th:each="specialty : ${vet.specialties}"
7 th:text="${specialty.name + ’ ’}"
8 />
9 <span th:if="${vet.nrOfSpecialties == 0}">none</span>

10 </td>
11 </tr>
12 </tbody>

Again a DSL for HTML suppresses the use of additional dialects and may achieve
the desired layout only with Java statements, such as the HtmlFlow sample presented
in Listing 5.8. Here we are only taking advantage of the forEach() traversal method
provided by the Java Stream API (line1) and a Java ternary operator (line 5).

5.4 Binding inputs and preprocessing expression

The select HTML element has similar behavior to the well known drop-down compo-
nent, also known as combo box. The SelectField view aims to bind all elements of an



18 FM. Carvalho et al.

Listing 5.8: VetList HtmlFlow sample for displaying veterinaries.

1 .tbody().of(tbody -> vets.forEach(v -> tbody
2 .tr()
3 .td().text(v.getFirstName() + " " + v.getLastName ()).__()
4 .td().span()
5 .text(v.nrOfSpecs() == 0 ? "none" : join(" ", v.specs()))
6 .__().__()
7 .__() //tr
8 )).__() //tbody

items list to a select element. Yet, it must also assign the HTML attribute selected
of the corresponding option element that matches the selected parameter passed to
this view. This is exactly the algorithm implemented by the HtmlFlow SelectField
view that receives a src parameter with the items list and the selected object, as
presented in Listing 5.9.

Listing 5.9: SelectField HtmlFlow partial view sample.

1 .select()
2 .of(select -> src.items.forEach(item -> select
3 .option().attrValue(item.toString()).of(opt -> {
4 if(src.selected.equals(item.toString()))
5 opt.attrSelected(true);
6 })
7 .text(item)
8 .__() //option
9 ))

10 .__() //select

In line 2 of Listing 5.9 we are traversing the items list through the forEach()
method and in line 3 we are adding an HTML option element for each of those items.
If an item is equal to the selected parameter (line 4) then we will add the attribute
selected to the related option element (line 5). Finally in line 7 we include the item
as the text of the option element.

The Thymeleaf corresponding version mitigates all the details of the algorithm ex-
pressed in Listing 5.9. Yet, it also requires keen knowledge of the Thymeleaf dialects
able for preprocessing expressions as depicted in Listing 5.10.

Listing 5.10: selectField.html Thymeleaf partial view sample.

1 <select th:field="*{__${name}__}">
2 <option th:each="item : ${items}" th:value="${item}"
3 th:text="${item}">
4 dog
5 </option>
6 </select>

First the th:field attribute (line 1 of Listing 5.10) behaves differently depen-
ding on whether it is attached to an input, select or textarea. Then values for



Text Web Templates considered Harmful 19

the th:field must be selection expressions denoted as *{...} because they will be
evaluated on the form-backing bean and not on the context variables. And finally the
${...} is a preprocessing expression, which is an inner expression that is evaluated

before the whole expression. This is the tricky part of the Thymeleaf dialect that will
check the property identified by name in the item object (line 2) that may be selected,
or not, in the corresponding option element.

5.5 Fragments and layouts

Layouts aim to reuse a common structure (usually composed by header, footer and
navigation bar) among different template views. To that end the PetClinic application
defines a layout.html fragment parametrized with a template view that is included
dynamically based on the inclusion of template fragments. In the sample of Listing 5.11
the line 2 defines the layout fragment and in line 5 it includes the template view
embedding its content within the layout through the th:block th:insert tag.

Listing 5.11: layout.html view sample.

1 <!doctype html>
2 <html th:fragment="layout (template)">
3 ...
4 <div class="container">
5 <th:block th:insert="${template}"/>
6 ...
7 </html>

On the other hand, each view inheriting the layout.html should specify the content
that should be passed to the layout as the template parameter. In Listing 5.12 we
present an example of how the PetClinic application includes a Thymeleaf template
view within the layout.html. In line 2 it uses the th:replace to invoke the layout
and pass the body element as argument. In turn, this body element includes all the
content to be presented as the VetList web page.

Listing 5.12: vetList.html view inclusion in layout.html.

1 <html
2 th:replace="˜{fragments/layout :: layout (˜{::body},’vets ’)}">
3 <body>
4 <h2>Veterinarians</h2>
5 ...
6 </body>

Again HtmlFlow takes advantage of functions composition to define a template lay-
out. In this case we define a distinct class Layout with a static field view corresponding
to the layout function, as depicted in Listing5.13. Then, it should include the partial
view through the addPartial method (line 7).

In opposition to the inclusion approach followed by Thymeleaf templates, the Html-
Flow templates are agnostic with respect to the layout. Hence, the controller is responsi-
ble for composing the layout with the template view as presented in the following exam-
ple that assembles the VetList view: Layout.view.render(vets, VetList.view);



20 FM. Carvalho et al.

Listing 5.13: vetList.html view inclusion in layout.html.

1 public class Layout {
2 static DynamicHtml view = view((v, model , partials) -> { v
3 .html()
4 ...
5 .div().attrClass("container")
6 ...
7 .of(__ -> v.addPartial(partials[0], model);)
8 }
9 }

6 Performance Evaluation

To perform an unbiased comparison we used two of most popular benchmarks for tem-
plate engines: 1) Comparing Template engines for Spring MVC, simply denoted as
Spring templates benchmark[32] and 2) JMH benchmark for popular Java template
engines[7]. We integrated the missing engines in our forks of these benchmarks avail-
able at Github repositories: xmlet/spring-comparing-template-engines and xmlet/temp-
late-benchmark. These tests were done on a local machine running Microsoft Windows
10, Education OS Version: 10.0.17134 with Java(TM) SE Runtime Environment 18.9
(build 11+28) Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11+28, mixed mode)
and with Intel(R) Core(TM) i7-7700 HQ CPU @ 2.80GHz, 2808 Mhz, 4 Cores.

6.1 Spring templates benchmark

This benchmark uses the Spring MVC framework to host a web application that pro-
vides a route for each template engine to benchmark. Each template engine uses the
same template (i.e. Presentations) and receives the same information to fill the tem-
plate, which makes it possible to flood all the routes with a high number of requests
and asserts which route responds faster, consequently asserting which template engine
is faster. Following the benchmark recommendation we used the Apache HTTP server
benchmarking tool as a stress tester running it with 25 concurrent requests and 25000
requests in total, which corresponds to the following settings:

ab -n 25000 -c 25 -k http://localhost:8080/<template engine>

The performance of each template engine was measured according to the guidelines
specified in the Spring benchmark repository, which states at least two dry runs with the
exact same settings, to make sure that initialization of the engines, warm up of the JVM
and additional caches have taken place.

After that, we calculate the average time taken by 5 iterations of the same bench-
mark for each template engine. The results are presented in Figure 2 corresponding to
the total time taken for processing 25000 requests with a concurrency level of 25 (lower
is better).



Text Web Templates considered Harmful 21

Fig. 2: Performance results in seconds for Spring templates benchmark.

This approach of measuring the template engines performance is misleading be-
cause the render time of the template engines is dismissible when compared to the over-
head introduced by the Spring framework. Thus, the performance differences among
some template engines are very tiny.

In this context, we mostly agree with the JMH templates benchmark proposal, which
uses JMH to implement the benchmark. So we end up using the Presentations tem-
plate from the Spring benchmark and integrated it in our fork of JMH templates bench-
mark to get more reliable measures.

6.2 JMH benchmark for Java template engines

The advantage of this benchmark is that it focuses exclusively on evaluating the render-
ing process of each template engine. In this case, it does not use any web servers to han-
dle a request, which is a more consistent approach. The general idea of this benchmark
is the same, it includes many template engine solutions that define the same template
and use the same data as a context object to generate the resulting HTML document.
But, in this case, it uses Java Microbenchmark Harness, which is a Java tool to bench-
mark code. With JMH we indicate which methods to benchmark with annotations and
configure different benchmark options such as the number of warm-up iterations, the
number of measurement iterations, or the numbers of threads to run the benchmark
method.



22 FM. Carvalho et al.

This benchmark contained eight different template engines: Freemarker, Handle-
bars, Mustache, Pebble, Thymeleaf, Trimou, Velocity, and Rocker. In addition, we in-
tegrated J2Html, KotlinX.html, and HtmlFlow.

The JMH templates benchmark used only one template, i.e. Stocks template. In
addition we included the Presentations template from the Spring templates bench-
mark. By using two different templates the objective was to observe if the results were
maintained throughout the different solutions. The main difference between both tem-
plates is that the Stocks template introduces much more binding operations: 1) it has
more fields that will be accessed in the template, and 2) it has twenty objects in the
default data set while Presentations only has ten objects in his data set. This means that
the Stocks template will generate more string operations to the classic template engine
solutions and more Java method calls for the solutions that have the template defined as
a function in Java or Kotlin.

In Figure3 we present the results of the JMH templates benchmark corresponding
to the mean value of five forked iterations, each one of the forks running eight different
iterations, performed after five warm-up iterations. This approach intends to remove
any outlier values from the benchmark. The benchmark values were obtained without
any other programs running, nor background tasks, and only with the command line
running the benchmark.

Fig. 3: Performance results in operations per second for JMH templates benchmark.

Regarding the classical template engines, i.e. Mustache, Pebble, Freemarker, Tri-
mou, Velocity, Handlebars, and Thymeleaf, we can observe that most of them share
the same level of performance, which should be expected since they all roughly have
the same methodology. Regarding the remaining template engines, i.e. Rocker, J2Html,
KotlinX.html, and HtmlFlow, the situation is diverse. On one hand, we have Rocker,
which gives great performance when the number of placeholders increases, i.e. the
Stocks benchmark, taking into consideration that it provides many compile-time ver-
ifications regarding the context objects, it presents a good improvement in comparison
to the classical template engines. On the other hand, we have J2Html and KotlinX.html.
Regarding J2Html we observe that the tradeoff of moving the template to a function of



Text Web Templates considered Harmful 23

the environment language (i.e. Java) had a significant performance cost since it is con-
sistently one of the two worst solutions performance-wise. Regarding KotlinX.html, its
approach was definitely a step towards in the right direction since it validates the HTML
rules and introduces compile-time validations, but, either due to the Kotlin language
performance issues or poorly optimized code, it did not achieve the level of acceptable
performance.

Lastly, HtmlFlow proved to have the best performance with the Presentation tem-
plate. It achieved performance gains that surpass the second best solution by twice
the operations per second. Regarding the Stocks template, the HtmlFlow held the top
place even though the number of placeholders for dynamic information increased sig-
nificantly. If we compare HtmlFlow to a similar solution, KotlinX.html, we observe a
huge gain of performance on the HtmlFlow part.

In conclusion, HtmlFlow introduces domain language rule verification, removes the
requirements of text files and additional syntaxes, adds many compile-time verifica-
tions, and, while doing all of that this, is still the best solution performance wise.

7 Conclusions and Future Work

Electing a template engine may be a choice between the set of available templating
features and the simplicity of resulting templates. And, it is not viable to stretch both
axis. For example, Mustache is a logic-less template syntax, which provides minimal
templating through double-braces tags (i.e. {{...}} ), but at same time it is too much
restrictive on the limited set of available features. On the other hand, Thymeleaf pro-
vides an enlarged number of functionalities, but it turns templates very intricated.

As more features we take from the engine more complex become the templates.
And, as more simple we require the template, less features the engine provides.

In truth, web frameworks are build on top of a high-level programming language
and enriching templating dialects will enforce developers to deal with two different
programming languages. Moreover, these two languages are heterogeneous and have
different building natures. While the host programming language spreads from the
functional to imperative paradigms, the templating dialects are usually embedded in
markups, which results in a mix of declarative and imperative idioms. This anti-para-
digm inception of templating dialects turn templates difficult to manage as we have
shown with 10 of the most used building blocks of Thymeleaf.

These problems arises from two unavoidable facts: 1. HTML is the main user in-
terface programming language, and 2. HTML is a markup language with distinct char-
acteristics from the host programming language. Thus we argue that empowering tem-
plating dialects is a counterproductive approach that leads to harmful templates.

In this work we propose a different methodology to answer developers needs on
web templating. Rather than augmenting HTML markups with additional templating
constructions we propose to keep HTML plain and let programmers interleave HTML
with the use of the host programming language.

To that end we take advantage of an internal DSL to HTML to bring the power of
the host programming language (such as Java) into web templates. We have shown the
use of a DSL to HTML in three different hosting languages, namely Java, Kotlin and



24 FM. Carvalho et al.

Javascript through the related DSL libraries HtmlFlow, KotlinX.Html and JSX. Further-
more, we have presented how the most used template patterns (e.g. using Thymeleaf)
can be easily achieved with pure Java statements and the support of HtmlFlow Java
library without any further dialect beyond the Java programming language.

To prove the effectiveness of our proposal we have used a well-known sample web
application - PetClinic - and migrated the exiting Thymeleaf templates to Java with the
support of HtmlFlow library. The last release of HtmlFlow (3.5) includes the translation
tool Flowifier that allows the conversion of an HTML document in its equivalent def-
inition in HtmlFlow idiom. This tool was essential to enhance the translation process of
existing templates into the related HtmlFlow definition. The wide variety of templating
idioms used in PetClinic and their successful translation to Java and Htmlflow, give us
confidence about future applications of HtmlFlow to other real web applications.

References

1. Alur, D., Malks, D., Crupi, J.: Core J2EE Patterns: Best Practices and Design Strategies.
Prentice Hall PTR, Upper Saddle River, NJ, USA (2001)

2. Ase, D.: Kotlin dsl for html. Tech. rep., https://j2html.com/ (2015), https://j2html.com/
3. Baker, H.G.: Iterators: Signs of weakness in object-oriented languages. SIGPLAN OOPS

Mess. 4(3), 18–25 (Jul 1993). https://doi.org/10.1145/165507.165514, https://doi.org/
10.1145/165507.165514

4. Binder, W., Hulaas, J., Moret, P.: Advanced java bytecode instrumentation. In: Pro-
ceedings of the 5th International Symposium on Principles and Practice of Pro-
gramming in Java. pp. 135–144. PPPJ ’07, ACM, New York, NY, USA (2007).
https://doi.org/10.1145/1294325.1294344, http://doi.acm.org/10.1145/1294325.
1294344

5. Breslav, A.: Kotlin Language Documentation (2016), https://kotlinlang.org/docs/
kotlin-docs.pdf

6. Brogden, B., D’Cruz, C., Gaither, M.: Cocoon 2 programming: web publishing with XML
and Java. John Wiley & Sons (2006)

7. Bösecke, M.: Jmh benchmark of the most popular java template engines. Tech.
rep., https://github.com/mbosecke/template-benchmark (2015), https://github.com/
mbosecke/template-benchmark

8. Carvalho, F.M.: Htmlflow java dsl to write typesafe html. Tech. rep., https://htmlflow.org/
(2017), https://htmlflow.org/

9. Carvalho., F.M., Duarte., L.: Modern type-safe template engines (2018), https://dzone.
com/articles/modern-type-safe-template-engines

10. Carvalho., F.M., Duarte., L.: Hot: Unleash web views with higher-order templates. In: Pro-
ceedings of the 15th International Conference on Web Information Systems and Technolo-
gies - Volume 1: WEBIST,. pp. 118–129. WEBIST ’19, INSTICC, SciTePress (2019).
https://doi.org/10.5220/0008167701180129

11. Donald, K., Isvy, M., Leau, C.: Spring petclinic sample application. Tech. rep.,
https://projects.spring.io/spring-petclinic// (2013), https://projects.spring.io/
spring-petclinic/

12. Duarte., L., Carvalho., F.M.: xmlet. Tech. rep., https://github.com/xmlet (2018), https://
github.com/xmlet

13. E. Krasner, G., Pope, S.: A description of the model-view-controller user interface paradigm
in the smalltalk80 system. Journal of Object-oriented Programming - JOOP 1, 26–49 (1988)

https://j2html.com/
https://doi.org/10.1145/165507.165514
https://doi.org/10.1145/165507.165514
https://doi.org/10.1145/165507.165514
https://doi.org/10.1145/1294325.1294344
http://doi.acm.org/10.1145/1294325.1294344
http://doi.acm.org/10.1145/1294325.1294344
https://kotlinlang.org/docs/kotlin-docs.pdf
https://kotlinlang.org/docs/kotlin-docs.pdf
https://github.com/mbosecke/template-benchmark
https://github.com/mbosecke/template-benchmark
https://htmlflow.org/
https://dzone.com/articles/modern-type-safe-template-engines
https://dzone.com/articles/modern-type-safe-template-engines
https://doi.org/10.5220/0008167701180129
https://projects.spring.io/spring-petclinic/
https://projects.spring.io/spring-petclinic/
https://github.com/xmlet
https://github.com/xmlet


Text Web Templates considered Harmful 25

14. Evans, E., Fowler, M.: Domain-driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley (2004), https://books.google.pt/books?id=7dlaMs0SECsC

15. Fernández, D.: Thymeleaf. Tech. rep., https://www.thymeleaf.org/ (2011), https://www.
thymeleaf.org/

16. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (2002)

17. Fowler, M.: Domain Specific Languages. Addison-Wesley Professional, 1st edn. (2010)
18. Freeman, S., Mackinnon, T., Pryce, N., Talevi, M., Walnes, J.: Jmock library for test-driven

development with mock objects. Tech. rep., http://jmock.org (2008), http://jmock.org
19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-oriented Software. Addison-Wesley Co., Inc., Boston, MA, USA (1995)
20. Heijlsberg, A., Torgersen, M.: The .net standard query operators (2007)
21. Hors, A.L., Hégaret, P.L., Wood, L., Nicol, G., Robie, J., Champion, M., Arbor-

text, Byrne, S.: Document object model (dom) level 3 core specification. Tech. rep.,
https://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/ (2004), https://www.
w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/

22. Jin, X., Wah, B.W., Cheng, X., Wang, Y.: Significance and challenges of big data research.
Big Data Res. 2(2), 59–64 (Jun 2015). https://doi.org/10.1016/j.bdr.2015.01.006, http://
dx.doi.org/10.1016/j.bdr.2015.01.006

23. Johnson, R., Hoeller, J., Donald, K., Sampaleanu, C., Harrop, R., Risberg, T., Arendsen, A.,
Davison, D., Kopylenko, D., Pollack, M., et al.: The spring framework–reference documen-
tation. interface 21, 27 (2004)

24. Landin, P.J.: Correspondence between algol 60 and church’s lambda-notation: part i. Com-
munications of the ACM 8(2), 89–101 (1965)

25. Landin, P.J.: The next 700 programming languages. Communications of the ACM 9(3), 157–
166 (1966)

26. Marx, S., Odersky, M., Buckley, A.: Jsr 14: Add generic types to the java. Tech. rep., Java
Community Process (2004), https://jcp.org/en/jsr/detail?id=14

27. Mashkov, S.: Kotlin dsl for html. Tech. rep., https://github.com/Kotlin/kotlinx.html (2015),
https://github.com/Kotlin/kotlinx.html

28. Meijer, E.: Your mouse is a database. Queue 10(3), 20:20–20:33 (Mar 2012).
https://doi.org/10.1145/2168796.2169076, http://doi.acm.org/10.1145/2168796.
2169076

29. Mutschler III, E.O., Stefaniak, J.P.: Method for extending the hypertext markup language
(html) to support enterprise application data binding (Aug 17 1999), uS Patent 5,940,075

30. Parker, H.: Opinionated analysis development. PeerJ Preprints 5, e3210v1 (2017)
31. Parr, T.J.: Enforcing strict model-view separation in template engines. In: Proceedings of the

13th International Conference on World Wide Web. pp. 224–233. WWW ’04, ACM, New
York, NY, USA (2004). https://doi.org/10.1145/988672.988703

32. Reijn, J.: Comparing template engines for spring mvc. Tech. rep.,
https://github.com/jreijn/spring-comparing-template-engines (2015), https://github.
com/jreijn/spring-comparing-template-engines

33. Resig, J.: Pro JavaScript Techniques. Apress (2007)
34. Singh, I., Johnson, M., Stearns, B.: Designing enterprise applications with the J2EE platform.

Addison-Wesley Professional (2002)
35. Ted, N.: Literary Machines. Mindful Press, Sausalito, California (1994)
36. Thompson, K.: Programming techniques: Regular expression search algorithm. Commun.

ACM 11(6), 419–422 (Jun 1968). https://doi.org/10.1145/363347.363387, https://doi.
org/10.1145/363347.363387

37. Walke, J.: React javascript library for building user interfaces. Tech. rep., https://reactjs.org/
(2013), https://reactjs.org/

https://books.google.pt/books?id=7dlaMs0SECsC
https://www.thymeleaf.org/
https://www.thymeleaf.org/
http://jmock.org
https://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
https://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
https://doi.org/10.1016/j.bdr.2015.01.006
http://dx.doi.org/10.1016/j.bdr.2015.01.006
http://dx.doi.org/10.1016/j.bdr.2015.01.006
https://jcp.org/en/jsr/detail?id=14
https://github.com/Kotlin/kotlinx.html
https://doi.org/10.1145/2168796.2169076
http://doi.acm.org/10.1145/2168796.2169076
http://doi.acm.org/10.1145/2168796.2169076
https://doi.org/10.1145/988672.988703
https://github.com/jreijn/spring-comparing-template-engines
https://github.com/jreijn/spring-comparing-template-engines
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://reactjs.org/

	Text Web Templates considered Harmful

