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Abstract. Software Transactional Memory (STM) implementations ty-
pically instrument each memory access within transactions with a call to
an STM barrier to ensure the correctness of the transactions. Compared
to simple memory accesses, STMbarriers are complex operations that add
significant overhead to transactions doing many memory accesses. Thus,
whereas STMs have shown good results for micro-benchmarks, where
transactions are small, they often show poor performance on real-world–
sized benchmarks, where transactions are more coarse-grained and, there-
fore, encompass more memory accesses.

In this paper, we propose a new runtime technique for lightweight
identification of captured memory—LICM—for which no STM barriers
are needed. Our technique is independent of the specific STM design and
can be used by any STM implemented in a managed environment. We
implemented it on the Deuce STM Framework, for three different STMs,
and tested it across a variety of benchmarks.

Using our technique to remove useless barriers, we improved the per-
formance of all baseline STMs for most benchmarks, with speedups of up
to 27 times. Most importantly, we were able to improve the performance
of some of the benchmarks, when using an STM, to values close to or
better than the performance of the best lock-based approaches.

Keywords: Software Transactional Memory, Runtime Optimizations.

1 Introduction

Some researchers (e.g. [6]) question the usefulness of Software Transactional
Memory (STM), because most STM implementations fail to demonstrate appli-
cability to real-world problems: In many cases, the performance of an STM on
a real-world–sized benchmark is significantly lower than the sequential version
of the benchmark, or even than the version using coarse-grain locks. The loss of
performance is often attributed to the over-instrumentation [19] made on these
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benchmarks by overzealous STM compilers that protect each and every memory
access with a barrier that calls back to the STM runtime.

Thus, several researchers proposed optimization techniques to elide useless
barriers—for instance, to elide barriers when accessing transaction local mem-
ory. The most effective proposals (e.g. [2], [5], [13] and [19]) decompose the STM’s
API in heterogeneous parts that allow the programmer to convey application-
level information about the behavior of the memory locations to the instrumen-
tation engine. Yet, this approach contrasts with one of the main advantages of
an STM, which is to provide a transparent synchronization API, meaning that
programmers just need to specify which operations are atomic, without knowing
which data is accessed within those operations. That is the approach used by
Deuce STM [14], an STM framework for the Java environment.

Afek et al. [1] added to Deuce STM a static analysis technique to enable
compile-time optimizations that avoid instrumentation of memory accesses in
several situations, including to transaction local memory. Yet, this approach
does not accomplish the performance improvements shown by solutions based
on heterogeneous APIs that were also proposed to Deuce STM [5]. In fact, static
compiler analysis is often imprecise and conservative, and thus cannot remove
all unnecessary barriers, because program modules are dynamically loaded, for
example, and it is impossible to perform whole program compiler analysis. How-
ever, we argue that automatic approaches that keep the transparency of the
STM API are better suited to the overall goal of STMs. So, in this paper, we
propose to tackle this problem and find a technique based on runtime analy-
sis that automatically and efficiently elide STM barriers for transaction local
memory.

Our work is based on the proposal of Dragojevic et al. [8], which introduces
the concept of captured memory as memory allocated inside a transaction that
cannot escape (i.e., is captured by) its allocating transaction. Captured memory
corresponds to newly allocated objects that did not exist before the beginning of
their allocating transaction and that, therefore, are held within the transaction
until its successful commit. They use the term capture analysis (similar to es-
cape analysis) to refer to a compile- or runtime-time algorithm that determines
whether a memory location is captured by a transaction or not.

Given the lack of demonstrable effectiveness of the static compiler analysis [1],
here we are interested in exploring the proposal of Dragojevic et al. [8] for run-
time capture analysis, adapt it to a managed runtime environment and make it
more efficient. More specifically, the main contributions of this paper are:

– A new runtime technique for lightweight identification of captured memory—
LICM—for managed environments that is independent of the underlying
STM design (Section 3). Our approach is surprisingly simple, yet effective,
being up to 5 times faster than the filtering algorithm proposed by [8] (which
we briefly introduce in Section 2.2).

– We implemented the LICM in Deuce STM, which already includes some
optimization techniques in its original implementation (Section 2.1). Our
implementation uses a new infrastructure of enhancement transformations,
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which is described in Section 4. By providing an implementation of our
proposal within Deuce STM, we were able to test it with a variety of baseline
STM algorithms, namely, LSA [16], TL2 [7], and JVSTM [10].

– We performed extensive experimental tests for a wide variety of benchmarks
(Section 5), including real-world–sized benchmarks that are known for be-
ing specially challenging for STMs. The goal of these tests was not only to
evaluate the performance of our proposal, but, more importantly, to assess
the usefulness of the runtime capture analysis, thus completing the anal-
ysis of [8] about how many of the memory accesses are to captured loca-
tions. Besides the STAMP [4], we also analyze the STMBench7 [12], and the
JWormBench [5], which were not included in [8].

– For the first time, in some of the more challenging benchmarks, the LICM
makes STM’s performance competitive with the best fine-grained lock-based
approaches. Moreover, given its lightweight nature, it has almost no overhead
when the benchmark presents no opportunities for optimizations.

In Section 6, we discuss related work on optimization techniques for STMs.
Finally, in Section 7, we conclude and discuss some future work.

2 Past Solutions for Compiler Over-Instrumentation

A naive STM compiler translates every memory access inside a transaction into
a read or a write barrier, which typically require orders of magnitude more
machine cycles than a simple memory access. So, whereas the approach taken by
STM compilers ensures the correctness of the whole application, it also degrades
its performance significantly. In this section, we present an overview on past
solutions to elide useless STM barriers.

2.1 Deuce STM Optimizations

Deuce STM is a Java-based STM framework that provides a bytecode instrumen-
tation engine implemented with ASM [3]. Its two major goals are: (1) to be able
to integrate the implementation of any synchronization technique, and, in par-
ticular, different STMs; and (2) to provide a transparent synchronization API,
meaning that a programmer using it just needs to be concerned with the iden-
tification of the methods that should execute atomically. For this purpose, the
programmer marks those methods with an @Atomic annotation and the Deuce’s
engine automatically synchronizes their execution using a synchronization tech-
nique that is defined by the programmer in a class that implements the Context
interface (for more detailed information about Deuce STM see [14]).

During instrumentation, Deuce STM can perform two optimizations to sup-
press useless STM barriers. First, Deuce STM does not instrument accesses to
final fields, as they cannot be modified after creation. This optimization avoids
the use of STM barriers when accessing immutable fields, provided that they
were correctly identified in the application code.
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Second, programmers may exclude some classes from being transformed by
specifying the names of the classes to be excluded via a runtime parameter
(org.deuce.exclude). This approach, however, reduces the transparency of the
Deuce API. Moreover, it has some limitations: It does not work with arrays,
nor can it be used when the same class has both instances that are shared and
instances that are not shared across the transaction’s boundaries. So, there is no
support in the original Deuce STM for identifying objects that are transaction
local and it is not feasible to do it through the existent mechanisms.

2.2 Runtime Capture Analysis

Our proposal is based on the work of Dragojevic et al. [8], originally proposed
for the Intel C++ STM compiler, but that we adapted to the Deuce STM.

In Algorithm 1, we show the pseudo code for a read and a write barrier in
Deuce STM when using runtime capture analysis. In both cases, the barrier first
checks whether the object being accessed is captured by the current transaction.
If so, it accesses data directly from memory; otherwise, it executes the standard
full barrier. As in Deuce STM, object fields are updated in place using the
sun.misc.Unsafe pseudo-standard internal library.

Algorithm 1. Read and write barriers when using runtime capture analysis

� in the following, ref is an object, addr is the address of the field accessed
on ref , val is the value read/written, and ctx is the transaction’s context

1: function onReadAccess(ref, val, addr, ctx)
2: if isCaptured(ref, ctx) then
3: return val � returns the field’s value if the object ref is captured by ctx
4: else
5: return ctx.onReadAccess(ref, val, addr) � full STM barrier has to be used
6: end if
7: end function

8: function onWriteAccess(ref, val, addr, ctx)
9: if isCaptured(ref, ctx) then
10: Unsafe.putInt(ref, addr, val) � Updates the field in-place.
11: else
12: ctx.onWriteAccess(ref, val, addr) � full STM barrier has to be used
13: end if
14: end function

The performance of this solution depends on the overhead of the capture anal-
ysis, which is made by the isCaptured function. So, if the potential savings from
barrier elision outweighs the cost of runtime capture analysis, then the average
cost of a barrier in an application will be reduced and the overall performance
will be improved.

In the Dragojevic et al’s original proposal the capture analysis algorithm
was intertwined with the memory management process. The key idea of their
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algorithmwas to compare the address of the accessed object, ref, with the ranges
of memory locations allocated by the transaction. To perform this analysis, all
transactions must keep a transaction-local allocation log for all allocated memory.

So, the performance of the isCaptured function depends on the performance
of the search algorithm that needs to lookup the allocation log for a specific ad-
dress, which ultimately depends on the efficiency of the data structure used to
implement the allocation log. In their work, they implemented and tested three
different data structures: a search tree, an array, and a filter of memory ranges.
The search tree allows insertions and removals of memory ranges and search op-
erations to determine if an address belongs to a memory range stored in the tree.
The array implementation of the log simply keeps all memory ranges allocated
inside a transaction as an unsorted array. Finally, the filtering approach uses a
hash table as a filter: When a block of memory gets allocated, all memory loca-
tions belonging to the block are hashed and the corresponding hash table entries
are marked with the exact addresses of the corresponding memory locations;
thus, this filtering scheme allows false negatives.

Dragojevic et al’s experimental results show similar performance improve-
ments for the three data structures,1 peaking at 18% for 16 threads and the
Vacation benchmark in a low-contention configuration.

On a managed runtime environment with automatic memory management, we
do not have readily access to the memory allocation process, so that we can log
which memory blocks are allocated by a transaction and, therefore, we cannot
implement the capture analysis algorithm based on the search tree or the array
data structures. Thus, we adapted the hash table filtering algorithm, replacing
it with an IdentityHashMap of the JDK and we logged the references of the
objects instantiated by a transaction. In our case, and contrary to the original
approach, this implementation does not allow false negatives, which increases
the reliability of the capture analysis, but incurs in further overhead to maintain
the transaction-local allocation log. Nevertheless, using our implementation with
the TL2 STM, we get a performance improvement similar to what was shown
in [8]: For a low-contention configuration of the Vacation benchmark, we achieve
a performance improvement of 32% at 16 threads (see Figure 1).

3 Lightweight Identification of Captured Memory

Although the implementation of the Dragojevic et al’s filtering technique im-
proves the overall performance of Deuce STM, the isCaptured algorithm is
still much more expensive than a simple memory access: We have to calculate
the System.identityHashCode() for the accessed object and then we have to
lookup an hash table for that object.

In fact, even with this runtime capture analysis, Deuce STM still does not per-
form well in some of the most challenging benchmarks, such as the Vacation [4] or

1 With the hash table performing slightly worse, 5% in the worst case, than the
alternatives.
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the STMBench7 [12], where transactions are more coarse-grained and, therefore,
encompass more memory accesses.

We claim that is, in part, due to the relative high cost of the isCaptured

function, and that, if we can lower that cost, we may solve the problem. To see
what is the effect of removing all the STM barriers for transaction local memory
in these benchmarks, we identified the classes that are instantiated inside a
transaction scope, we excluded those classes from being instrumented (in the
cases where that was possible without compromising the correctness), and then
we measured the speedup obtained.

In Vacation, most of the transaction local objects are arrays and, therefore,
we have no easy way to avoid those STM barriers in Deuce STM. On the other
hand, in STMBench7 the operations traverse a complex graph of objects by us-
ing iterators over the collections that represent the connections in that graph.
Typically, these iterators are transaction local and, thus, accessing them using
STM barriers adds unnecessary overhead to the STMBench7’s operations. To
confirm this intuition, we logged the objects instantiated in the scope of a trans-
action and we also logged the read-set and the write-set for each operation of
the STMBench7. Thus, we could identify which barriers access transaction local
objects as shown in the results of Table 1. Then, we suppressed those barriers,
excluding the whole class definition from being transformed and we measured
the speedup for each operation.

Table 1. Barriers suppressed for each STMBench7 operation (r and w denote read and
write barrier, respectively) and the corresponding speedup on the operation when we
exclude the accessed classes from being instrumented. All classes, except LargeSetImpl,
belong to the java.util package.

Operation Id st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 op1 op2 op3 op4 op5 op6 op7 op8
AbstractList$Itr w w w w w w w w w w w w
AbstractMap$2$1 w w
HashMap rw rw rw rw
HashMap$Entry rw w w w
HashMap$Entry [] rw w w w
HashSet w w w w
LargeSetImpl
StringBuilder rw
TreeMap$KeyIterator w w w w
TreeMap$ValueIterator w
””$AscendingSubMap w w
””$EntrySetView w w
””$EntryIterator w w
Speedup TL2 2.5 1.3 6.1 1.1 3.4 2.4 1.4 3.5 4.4 2.9 3.1 3.1 1.7 1.9 1.9

From the results of Table 1, we can observe that there are transaction local ob-
jects for almost all of the STMBench7’s operations (except for op1, op4 and op5)
and the majority of their classes are related to the iterators of the java.util

collections, which confirms our expectations that these iterators are transaction
local. In the same table we can also observe a large speedup of each operation
when we avoid the STM barriers that access those transaction local objects.
So, based on these results, we expect that using an efficient capture analysis
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technique has a great influence on the overall performance of the STMBench7
with Deuce.

In our work, we propose to make the runtime capture analysis algorithm faster
by using the following approach: We label objects with unique identifiers of their
creating transaction, and then check if the accessing transaction corresponds to
that label, in which case we avoid the barriers. For this purpose, every transaction
keeps a fingerprint that it uses to mark newly allocated objects, representing the
objects’ owner transaction. Thus, the isCaptured algorithm just needs to check
if the owner of the accessed object corresponds to the transaction’s fingerprint of
the executing Context. In this case, it performs an identity comparison between
the fingerprint of the accessing transaction and the owner of the accessed object,
as shown in Algorithm 2.

Algorithm 2. The LICM algorithm of the isCaptured function

1: function isCaptured(ref, ctx)
2: return ref.owner = ctx.fingerprint
3: end function

Every time a new top-level transaction begins, its context gets a new unique
fingerprint. So, when a new object is published by the successful commit of
its allocating transaction, any previously running or newly created transaction
calling the isCaptured method for that object will return false, because their
fingerprint cannot be the same as the fingerprint recorded on that object. At the
end of the top-level transaction, we do not need to clear the context’s fingerprint
because a new fingerprint will be produced on the initialization of the next top-
level transaction.

The generation of new fingerprints is a delicate process that must be carefully
designed to avoid adding unintended overhead to either the Deuce STM engine
or the underlying STM. A naive approach to identify each transaction uniquely
is to use a global counter, but this approach adds unwanted synchronization
among threads that we would like to avoid. In fact, to address this problem, we
considered three different options for the generation of the fingerprints: (1) use
a global quiescent counter; (2) use a number of type long that is assembled by
combining a thread identifier with a per-thread sequence number; and (3) use a
newly allocated instance of class Object as a fingerprint. We discarded the first
option because we cannot do it simultaneously efficient and without the support
of either synchronization or any atomic operation. The other two options have
both benefits and costs. The second option avoids memory allocation, but it
requires some mechanism to deal with the wraparound of the numbers. On the
other hand, the third option avoids rollover and aliasing issues associated with
counters, but it imposes additional memory management burden.

Within these options, we chose the third, because it is the simplest approach
that solves all the problems as it relies on the garbage collection subsystem to
provide uniqueness and the ability to recycle unused fingerprints. Furthermore,



22 F.M. Carvalho and J. Cachopo

we do not expect to see significant differences between the alternatives, given
that the fingerprint is created when the transaction starts and corresponds to a
very small cost of the entire transaction. According to the results presented in
Figure 1, the TL2 enhanced with the LICM technique outperforms the filtering
approach and can improve the performance of the baseline STM by 60%—almost
twice the speedup achieved with filtering.

Fig. 1. The throughput for two workloads (low-contention and high-contention) of the
Vacation benchmark, when using the TL2 STM. We show results for the baseline STM
(tl2 ), for the STM enhanced with the filtering implementation (tl2-filter), and for our
LICM approach (tl2-licm).

4 Extending Deuce STM

There are some transactional optimization techniques, such as the LICM and
the multi-versioning used by JVSTM, that require a specific type system dis-
tinct from the one provided by the managed environment. Moreover, and in the
particular case of the LICM, it also needs to perform additional tasks beyond
the standard behaviour provided by the STM barriers. Yet, the original Deuce
STM just provides extensibility in terms of the specification of the STM al-
gorithm, but it allows neither the definition of additional behavior orthogonal
to all STMs, nor any modification to the standard type system. We extended
Deuce STM to support the previous requirements and we followed three major
guidelines:2 (1) to avoid changing the current Deuce STM API; (2) to guaran-
tee retro-compatibility with existing applications and STMs for Deuce; and (3)
to provide the ability to enhance any existing STM with the capture analysis
technique without requiring either its recompilation or any modification to its
source-code.

Extending Deuce STM with the capture analysis technique requires two main
changes to the Deuce STM core structures: (1) the Context implementation of
any STM must keep a fingerprint representing the identity of the transaction
in execution and must perform the capture analysis shown in Algorithm 1; and
(2) a transactional class (i.e., a class whose instances are accessed in a transac-
tional scope) must have an additional field, owner, to store the fingerprint of the
transaction that instantiates it.
2 This adaptation of Deuce is available at
https://github.com/inesc-id-esw/deucestm/

https://github.com/inesc-id-esw/deucestm/
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To support the first feature, we added a new system property, org.deu-
ce.filter that enables the specification of a filter context—that is, a class that
implements the Context interface and adds some functionality to any existing
Context (using the decorator design pattern [11]). The new class ContextFil-
terCapturedState uses this approach, so that it can be applied to an existing
Context of any STM.

To ensure that all transactional objects have a owner field, their classes must
inherit, directly or indirectly, from the class CapturedState. To support this fea-
ture, we added to the Deuce STM framework a new infrastructure that allows
the specification and execution of enhancers, which are additional transforma-
tions to the standard Deuce instrumentation. These enhancers are instances of
classes implementing the interface Enhancer and they may be added to the
Deuce engine through the system properties org.deuce.transform.pre and
org.deuce.transform.post, depending on whether they should be performed
before or after the standard Deuce instrumentation. Moreover, the enhancers
may be combined in a chain of transformations, when more than one enhancer
is specified in the same pre or post property.

5 Performance Evaluation

All the tests were performed on a machine with 4 AMD Opteron(tm) 6168
processors, each one with 12 cores, resulting in a total of 48 cores. The JVM
version used was the 1.6.0 33-b03, running on Ubuntu with Linux kernel version
2.6.32.

To evaluate the performance of our approach, we used the STMBench7 [12],
the STAMP [4], and the JWormBench [5] benchmarks, with the LSA [16], the
TL2 [7], and the JVSTM [10] STMs, all implemented in the Deuce STM frame-
work. In all tests we show the results for the baseline STM, for the STM with
LICM support (identified by the suffix -licm), and for the STM with filtering
support (identified by the suffix -filter).

Moreover, given that the STMBench7 and the JWormBench benchmarks also
have a medium/fine-grained locking synchronization strategy, we also compare
the performance of the lock-based approach with the STM-based approach,
showing that for certain STMs, using LICM makes the performance of the STM-
based approach close to (or better than) the performance of the lock-based ap-
proach. In particular, for the STMBench7 and a low number of threads, JVSTM
outperforms the medium-lock approach.

5.1 STAMP Benchmarks

STAMP is a benchmark suite that attempts to represent real-world workloads
in eight different applications. We tested four STAMP benchmarks: K-Means,
Ssca2, Intruder, and Vacation.3 We ran these benchmarks with the configurations

3 The original implementation of STAMP is available as a C library and these four
benchmarks are the only ones available for Java in the public repository of Deuce
that are running with correct results.
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proposed in [4]: For Vacation Low, “-n 256 -q 90 -u 98 -r 262144 -t 65536”; for
Vacation High, “-n 256 -q 90 -u 60 -r 262144 -t 65536”; for Intruder, “-a 10 -l
128 -n 65536 -s 1”; for KMeans, “-m 15 -n 15 -t 0.00001 -i random-n65536-d32-
c16.txt”; and for Ssca2, “-s 13 -i 1.0 -u 1.0 -l 13 -p 3”.

In Table 2, we show the speedup of each STM with LICM support for 1
thread and for N threads. Note that a speedup higher than 1 means that the
performance improved with LICM, whereas a speedup lower than 1 means that
performance decreased with LICM. The results in Table 2 show that LICM
improves the performance of the baseline STMs for the majority of the evaluated
benchmarks and that, when it has no benefits (due to the lack of opportunities
for elision of barriers), the imposed overhead is very low.

Table 2. The speedup of each STM with LICM support for 1 thread and N threads. In
the latter case we also show, between parentheses, the number of threads that reach the
peak of performance, with and without the LICM support, respectively. We emphasise
in bold the speedup values that are higher than 1.0.

1 thread
Vacation

Low-contention
Vacation

High-contention Intruder KMeans Ssca2
LSA 1.2 1.2 1.4 0.9 1.0
TL2 1.1 1.1 1.2 0.9 0.9

JVSTM 1.1 1.1 1.2 1.0 1.0

N threads

LSA
7.0

(40/8)
6.0

(40/12)
1.7

(16/8)
1.0

(32/32)
0.9

(8/8)

TL2
1.6

(32/32)
1.6

(32/40)
1.3

(16/16)
1.0

(12/24)
1.0

(8/8)

JVSTM
1.1

(8/8)
1.0

(40/40)
1.1

(8/8)
1.0

(4/4)
1.0

(32/32)

The speedup we observed in Intruder and Vacation agrees with the results
of [8], which provide evidence for some opportunities of elision of transaction
local barriers. From our analysis, Intruder instantiates an auxiliary linked list
and a byte[], whose barriers can be elided with our capture analysis technique.
On the other hand, Vacation performs three different kinds of operations, each
one including an initialization phase and an execution phase. In the initial-
ization phase it instantiates several arrays with the arguments that should be
parametrized in the operations performed by each transaction. These auxiliary
arrays are transaction local and their access barriers can be suppressed through
capture analysis.

Although the performance with LICM is similar for LSA and TL2, LSA shows
better speedup due to scalability problems verified in the LSA when executed
without the LICM—in this case we registered a high rate of aborts due to the
eager ownership acquisition approach followed by LSA. For the JVSTM we do
not observe the same improvement in performance because, although LICM
helps to elide useless barriers for transaction local objects, they still incur in
additional metadata that penalizes the corresponding memory accesses (in the
case of the TL2 and the LSA, there is no in-place metadata associated with the
transactional objects).
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According to [8], neither K-Means nor Ssca2 access transaction local memory
and, thus, in these cases there are no opportunities for eliding barriers with
capture analysis. Our results are consistent with this, but still show that our
technique for capture analysis has almost no overhead in performance and it
just degrades the performance of up to 10% in the worst case.

5.2 STMBench7 Benchmark

LSA and JVSTM have the best performance in the STMBench7, when compared
to TL2, because of their versioning approach, which allows read-only transactions
to get a valid snapshot of memory and thus, they always commit successfully.
Yet, LSA shows a huge scalability problem when not using capture analysis, due
to the overhead of useless STM barriers when accessing transaction local objects.
This happens even in the case of the read-dominated workload because most of
the read-only operations use write barriers, thereby forcing the transactions to
be executed as read-write transactions. The operations are classified as read-
only because they do not change shared objects, but they still need to use write
barriers (when not using captured analysis) because they change transaction-
local objects. When this happens, LSA cannot optimize the execution of read-
only transactions. Once the useless barriers are elided with LICM, LSA can
already take advantage of read-only transactions and we see that it scales for an
increasing number of threads, as depicted in the results of Figure 2.

Fig. 2. The STMBench7 throughput for LSA and JVSTM, in the three available work-
loads, without long traversal operations. For readability reasons we omitted TL2, which
is the worst of the STMs.

In the results of Figure 2 we omitted TL2, which is the STM with the worst
performance. We can also observe that the performance of LSA-licm is between
20% and 80% better than LSA-filter, depending on the workload. Even though
LSA-licm performs better, its results are still far from the results obtained with
JVSTM-licm, which is the most performant STM in the STMBench7. In fact,
JVSTM-licm gets better results than the medium-lock synchronization approach
for a number of threads lower than 24. In this case, JVSTM benefits from its
lock-free commit algorithm and from the lazy ownership acquisition approach,
in contrast to the eager approach of the LSA.
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5.3 JWormBench Benchmark

In [5], we used the JWormBench benchmark to explore the effects on performance
of relaxing the transparency of an STM. To that end, we extended the Deuce
API with a couple of annotations that allow programmers to specify that certain
objects or arrays should not be transactified. Using this approach, we got an
improvement of up to 22-fold in the performance. Now, with our new LICM
technique, we got similar results but without having to change the original Deuce
API.

There are two major sources of unnecessary STM barriers in the JWorm-
Bench: (1) a global immutable matrix containing the world nodes (which cannot
be expressed as immutable in Java), and (2) the auxiliary arrays to the worm
operations. The first barriers can be suppressed by excluding the class World

from the instrumentation of Deuce On the other hand, the second barriers will
be automatically elided through our LICM technique.

In Figure 3, we show the results obtained for the JWormBench benchmark.
TL2 and LSA present the same performance in both workloads of the JWorm-
Bench and, so, we show the results for LSA only. In this case LSA-licm performs
between 2 and 5 times faster than LSA-filter. Unlike what happened for the STM-
Bench7, LSA with capture analysis is always better than JVSTM in the JWorm-
Bench, because these workloads have transactions with a smaller average length
and with a lower level of contention. But, most importantly, we can see that
both STMs get results close to the results obtained with the fine-grained lock-
ing approach, whereas without LICM they were an order of magnitude slower.
This is true for the first workload, but when the number of write operations
increases too much, as in the case of the O(n2), NReads,NWrites workload,
the performance of JVSTM degrades for a higher number of threads, due to the
big overhead of its read-write transactions.

The major overhead of the JWormBench comes from the mathematical op-
erations performed by each worm. When these operations perform useless STM
barriers they add a significant overhead to the transactions. In fact, and ac-
cording to the observations of [5], both workloads spend almost 50% of the
execution time accessing transactional local arrays through unnecessary STM
barriers. Furthermore, this situation increases too much the average length of the
transactions and, therefore, increases the rate of aborted transactions. In those
circumstances all STMs incur in huge overheads and substantially decrease the
overall throughput.

6 Related Work

Compiler over-instrumentation is one of the main reasons for the STM overheads
and an obstacle to the use of STMs in real-world–sized applications. The use of
unnecessary barriers on transaction-local memory access has a huge contribution
to this behavior and in the past few years several solutions have been proposed
to mitigate this problem.
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Fig. 3. The JWormBench throughput for LSA, JVSTM, and locks, for two different
wokloads. Note that the vertical axes use a logarithmic scale.

One of the first contributions of Harris et al. [13] proposed a direct access STM
with a new decomposed interface that is used in the translation of the atomic
blocks and is exposed to the compiler, giving new opportunities for optimiza-
tion. Another approach, proposed by Yoo et al. [19], is to use a new tm waiver

annotation to mark a function or block that should not be instrumented by the
compiler for memory access—waivered code. Likewise, Ni et al. [15] propose that
programmers have the responsibility of declaring which functions could avoid the
instrumentation through the use of the annotation tm pure. The same approach
has been followed in managed runtime environments, such as the work of Beck-
man et al. [2], which proposes the use of access permissions, via Java annotations,
that can be applied to references to affect the behavior of the object pointed by
that reference. Carvalho et al. [5] also proposed the use of Java annotations to
identify the object fields and arrays that could be accessed directly, avoiding the
STM barriers.

Contrary to these approaches that involve the programmer and, thus, reduce
the transparency of the STM approach, the work of Riegel et al. [17] propose
to tune the behavior of the STM for individual data partitions. Their approach
relies on compiler data structure analysis (DSA) to identify the partitions of
an application, which may be thread-local or transaction-local. The work of
Dragojevic et al. [8] propose a technique for automatic capture analysis. They
provide this feature at runtime and also in the compiler using pointer analy-
sis, which determines whether a pointer points to memory allocated inside the
current transaction. Similar optimizations also appear in Wang et al. [18], and
Eddon and Herlihy [9], which apply fully interprocedural analyses to discover
thread-local data.

Our work builds on the work of Dragojevic et al, by proposing a lightweight
technique for the runtime identification of captured memory for managed en-
vironments. A key aspect for the effectiveness of our approach is that it is
performed at runtime (albeit with very low overheads). In contrast with this,
Afek et al. [1] integrated static analysis in Deuce STM to eliminate redun-
dant read and write operations in transactional methods, including accesses to
transaction local-data. Yet, the results presented in their work are far from the
speedups shown with our approach.



28 F.M. Carvalho and J. Cachopo

7 Conclusions and Future Work

STMs are often criticized for introducing unacceptable overhead when com-
pared with either the sequential version or a lock-based version of any realistic
benchmark. Our experience in testing STMs with several realistic benchmarks,
however, is that the problem stems from having instrumentation on memory
locations that are not actually shared among transactions.

Several techniques have been proposed to elide useless STM barriers in pro-
grams automatically instrumented by STM compilers. From our analysis, the
main contributions in this field follow three distinct approaches: (1) runtime
capture analysis; (2) compiler static analysis to elide redundant operations; and
(3) decomposition of the STM APIs to allow programmers to convey the knowl-
edge about which blocks of instructions or memory locations should not be
instrumented. The latter approach is more efficient and has shown bigger im-
provements in the performance of the STMs, but has the inconvenient of reducing
the transparency of the STMs APIs. Yet, to the extent of our knowledge, none of
the previous solutions demonstrated performance improvements with the same
magnitude of the results that we present here for the STMBench7 and Vacation
benchmarks.

Our approach can solve one of the major bottlenecks that reduces the per-
formance in many realistic applications and simultaneously preserve the trans-
parency of an STM API, as shown with its implementation in the Deuce STM
framework. By adding a minor overhead in memory space to all transactional
objects (the reference to its owner), we get a huge speedup in the Vacation and
the STMBench7 benchmarks. In fact, for the first time in the case of STM-
Bench7, we were able to get better performance with an STM than with the
medium-grain lock strategy. Moreover, integrating LICM in a managed runtime
may further reduce the overhead of our approach and provide a significant boost
in the usage of STMs.
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